How to use the tqdm.tqdm.write function in tqdm

To help you get started, we’ve selected a few tqdm examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github oaqa / knn4qa / scripts / cedr / data.py View on Github external
def read_datafiles(files):
    queries = {}
    docs = {}
    for file in files:
        for line in tqdm(file, desc='loading datafile (by line)', leave=False):
            cols = line.rstrip().split('\t')
            if len(cols) != 3:
                tqdm.write(f'skipping line: `{line.rstrip()}`')
                continue
            c_type, c_id, c_text = cols
            assert c_type in ('query', 'doc')
            if c_type == 'query':
                queries[c_id] = c_text
            if c_type == 'doc':
                docs[c_id] = c_text
    return queries, docs
github hackingmaterials / automatminer / examples / bulk_shear_prediction.py View on Github external
prediction_list += [item for item in prediction]
        target_list += [item for item in test_target]

    bounds = [0, max(target_list) + 20]
    plt.scatter(target_list, prediction_list)
    plt.title("{} actual vs. predicted".format(target_label))
    plt.xlim(bounds)
    plt.ylim(bounds)
    x = np.linspace(0, bounds[1] + 20, 10000)
    plt.plot(x, x, color="black")
    plt.ylabel("Cross validated predictions for {}".format(target_label))
    plt.xlabel("Actual values for {}".format(target_label))
    plt.show()

    tqdm.write("RMSE for {}: {}".format(
        target_label, sum(rmse_scores) / len(rmse_scores)
    ))
    tqdm.write("R^2 for {}: {}".format(
        target_label, sum(r2_scores) / len(r2_scores)
    ))

    sleep(1)

# COMPARE TO MATBENCH
df = load_tehrani_superhard_mat(data="basic_descriptors")

df = df.drop(["formula", "material_id", "shear_modulus",
              "initial_structure"], axis=1)
traindf = df.iloc[:floor(.8 * len(df))]
testdf = df.iloc[floor(.8 * len(df)):]
target = "bulk_modulus"
github AIRLab-POLIMI / mushroom / examples / pendulum_a2c.py View on Github external
mdp.info.action_space.shape,
                                 **policy_params)

    agent = alg(mdp.info, policy, critic_params, **alg_params)

    core = Core(agent, mdp)

    for it in trange(n_epochs):
        core.learn(n_steps=n_steps, n_steps_per_fit=n_steps_per_fit)
        dataset = core.evaluate(n_steps=n_step_test, render=False)

        J = np.mean(compute_J(dataset, mdp.info.gamma))
        R = np.mean(compute_J(dataset))
        E = agent.policy.entropy()

        tqdm.write('END OF EPOCH ' + str(it))
        tqdm.write('J: {}, R: {}, entropy: {}'.format(J, R, E))
        tqdm.write('##################################################################################################')

    print('Press a button to visualize')
    input()
    core.evaluate(n_episodes=5, render=True)
github NRCan / geo-deep-learning / train_classification.py View on Github external
# optional hyperparameters. Set to None if not in config file
    class_weights = torch.tensor(params['training']['class_weights']) if params['training']['class_weights'] else None
    if params['training']['class_weights']:
        verify_weights(num_classes, class_weights)
    ignore_index = get_key_def('ignore_index', params['training'], -1)

    # Loss function
    criterion = MultiClassCriterion(loss_type=params['training']['loss_fn'], ignore_index=ignore_index, weight=class_weights)

    # Optimizer
    opt_fn = params['training']['optimizer']
    optimizer = create_optimizer(params=model.parameters(), mode=opt_fn, base_lr=lr, weight_decay=weight_decay)
    lr_scheduler = optim.lr_scheduler.StepLR(optimizer=optimizer, step_size=step_size, gamma=gamma)

    if checkpoint:
        tqdm.write(f'Loading checkpoint...')
        model, optimizer = load_from_checkpoint(checkpoint, model, optimizer=optimizer)

    return model, criterion, optimizer, lr_scheduler
github TAMU-VITA / AutoGAN / functions.py View on Github external
gen_scheduler, dis_scheduler = schedulers
                g_lr = gen_scheduler.step(global_steps)
                d_lr = dis_scheduler.step(global_steps)
                writer.add_scalar('LR/g_lr', g_lr, global_steps)
                writer.add_scalar('LR/d_lr', d_lr, global_steps)

            # moving average weight
            for p, avg_p in zip(gen_net.parameters(), gen_avg_param):
                avg_p.mul_(0.999).add_(0.001, p.data)

            writer.add_scalar('g_loss', g_loss.item(), global_steps)
            gen_step += 1

        # verbose
        if gen_step and iter_idx % args.print_freq == 0:
            tqdm.write(
                "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" %
                (epoch, args.max_epoch, iter_idx % len(train_loader), len(train_loader), d_loss.item(), g_loss.item()))

        writer_dict['train_global_steps'] = global_steps + 1
github SYSU-RCDD / QBMG / transfer_learning.py View on Github external
if epoch % 2 == 0 and step == 1:
                #decrease_learning_rate(optimizer, decrease_by=0.03)
                decrease_learning_rate(optimizer, decrease_by=0.03)
            if epoch % 10 == 0 and step == 1:
                tqdm.write("*" * 50)
                tqdm.write("Epoch {:3d}   step {:3d}    loss: {:5.2f}\n".format(epoch, step, loss.data[0]))
                seqs, likelihood, _ = Prior.sample(100)
                valid = 0
                f = open('tran_output.smi', 'a')
                for i, seq in enumerate(seqs.cpu().numpy()):
                    smile = voc.decode(seq)
                    if Chem.MolFromSmiles(smile):
                        valid += 1
                        f.write(smile + "\n")
                    if i < 10:
                        tqdm.write(smile)
                f.close()
                tqdm.write("\n{:>4.1f}% valid SMILES".format(100 * valid / len(seqs)))
                tqdm.write("*" * 50 + "\n")               
        # Save the Prior
        torch.save(Prior.rnn.state_dict(), "data/100_epochs_transfer.ckpt")
github kevinzakka / hypersearch / hyperband.py View on Github external
# training logic
        min_val_loss = 999999
        counter = 0
        num_epochs = int(num_iters) if self.epoch_scale else 1
        num_passes = None if self.epoch_scale else num_iters
        for epoch in range(num_epochs):
            self._train_one_epoch(model, num_passes, reg_layers)
            val_loss = self._validate_one_epoch(model)
            if val_loss < min_val_loss:
                min_val_loss = val_loss
                counter = 0
            else:
                counter += 1
            if counter > self.patience:
                tqdm.write("[!] early stopped!!")
                model.early_stopped = True
                return min_val_loss
        if self.batch_hyper:
            self.data_loader = None
        state = {
            'state_dict': model.state_dict(),
            'min_val_loss': min_val_loss,
        }
        self._save_checkpoint(state, model.ckpt_name)
        return min_val_loss
github arkhn / pagai / pagai / engine / dependency / main.py View on Github external
def build_dependency_graph(self, connection):
        graph = Graph()
        tables = get_table_names(connection=connection)
        for table in tables:
            graph.add_table(table)

        for table in tqdm(tables):
            tqdm.write(f"Computing joinable tables for {table}...")
            joinable_tables = self.find_joinable_tables(table, connection)

            tqdm.write("Add results to graph")
            for id_column, join_data in joinable_tables.items():
                for joinable_table, joinable_columns in join_data:
                    for joinable_column in joinable_columns:
                        join_info = (id_column, joinable_column)
                        graph.add_join(table, joinable_table, join_info)

        return graph
github pytorch / ignite / examples / mnist / mnist.py View on Github external
def log_training_results(engine):
        pbar.refresh()
        evaluator.run(train_loader)
        metrics = evaluator.state.metrics
        avg_accuracy = metrics['accuracy']
        avg_nll = metrics['nll']
        tqdm.write(
            "Training Results - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}"
            .format(engine.state.epoch, avg_accuracy, avg_nll)
        )
github oaqa / knn4qa / scripts / cedr / data.py View on Github external
continue
            pos_id = random.choice(pos_ids)
            pos_ids_lookup = set(pos_ids)
            pos_ids = set(pos_ids)
            neg_ids = [did for did in train_pairs[qid] if did not in pos_ids_lookup]
            if len(neg_ids) == 0:
                continue
            neg_id = random.choice(neg_ids)
            query_tok = model.tokenize(ds_queries[qid])
            pos_doc = ds_docs.get(pos_id)
            neg_doc = ds_docs.get(neg_id)
            if pos_doc is None:
                tqdm.write(f'missing doc {pos_id}! Skipping')
                continue
            if neg_doc is None:
                tqdm.write(f'missing doc {neg_id}! Skipping')
                continue
            yield qid, pos_id, query_tok, model.tokenize(pos_doc)
            yield qid, neg_id, query_tok, model.tokenize(neg_doc)