Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
[[13., 14.],
[14., 14.]],
[[8., 8.],
[8., 8.]]]) # 3x2x2
expected = torch.tensor([[[0.0641, 0.0714],
[0.0714, 0.0714]],
[[0.6190, 0.6364],
[0.6364, 0.6364]],
[[21.0000, 22.0000],
[22.0000, 22.0000]]]) # 3x2x2
f = color.RgbToHsv()
data = data.repeat(2, 1, 1, 1) # 2x3x2x2
print(data.shape)
expected = expected.repeat(2, 1, 1, 1) # 2x3x2x2
print(expected.shape)
print(f(data).shape)
assert_allclose(f(data), expected, atol=1e-4, rtol=1e-5)
def test_gradcheck(self):
data = torch.tensor([[[[21., 22.],
[22., 22.]],
[[13., 14.],
[14., 14.]],
[[8., 8.],
[8., 8.]]]]) # 3x2x2
data = utils.tensor_to_gradcheck_var(data) # to var
assert gradcheck(color.RgbToHsv(), (data,),
raise_exception=True)
[[13., 14.],
[14., 14.]],
[[8., 8.],
[8., 8.]]])
expected = torch.tensor([[[0.0641, 0.0714],
[0.0714, 0.0714]],
[[0.6190, 0.6364],
[0.6364, 0.6364]],
[[21.0000, 22.0000],
[22.0000, 22.0000]]])
f = color.RgbToHsv()
assert_allclose(f(data), expected, atol=1e-4, rtol=1e-5)