Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def __init__(self, root, split='train', transform=False):
super(VOC2011ClassSeg, self).__init__(
root, split=split, transform=transform)
pkg_root = osp.join(osp.dirname(osp.realpath(__file__)), '..')
imgsets_file = osp.join(
pkg_root, 'ext/fcn.berkeleyvision.org',
'data/pascal/seg11valid.txt')
dataset_dir = osp.join(self.root, 'VOC/VOCdevkit/VOC2012')
for did in open(imgsets_file):
did = did.strip()
img_file = osp.join(dataset_dir, 'JPEGImages/%s.jpg' % did)
lbl_file = osp.join(dataset_dir, 'SegmentationClass/%s.png' % did)
self.files['seg11valid'].append({'img': img_file, 'lbl': lbl_file})
class VOC2012ClassSeg(VOCClassSegBase):
url = 'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar' # NOQA
def __init__(self, root, split='train', transform=False):
super(VOC2012ClassSeg, self).__init__(
root, split=split, transform=transform)
class SBDClassSeg(VOCClassSegBase):
# XXX: It must be renamed to benchmark.tar to be extracted.
url = 'http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz' # NOQA
def __init__(self, root, split='train', transform=False):
self.root = root
self.split = split
did = did.strip()
img_file = osp.join(dataset_dir, 'JPEGImages/%s.jpg' % did)
lbl_file = osp.join(dataset_dir, 'SegmentationClass/%s.png' % did)
self.files['seg11valid'].append({'img': img_file, 'lbl': lbl_file})
class VOC2012ClassSeg(VOCClassSegBase):
url = 'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar' # NOQA
def __init__(self, root, split='train', transform=False):
super(VOC2012ClassSeg, self).__init__(
root, split=split, transform=transform)
class SBDClassSeg(VOCClassSegBase):
# XXX: It must be renamed to benchmark.tar to be extracted.
url = 'http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz' # NOQA
def __init__(self, root, split='train', transform=False):
self.root = root
self.split = split
self._transform = transform
dataset_dir = osp.join(self.root, 'VOC/benchmark_RELEASE/dataset')
self.files = collections.defaultdict(list)
for split in ['train', 'val']:
imgsets_file = osp.join(dataset_dir, '%s.txt' % split)
for did in open(imgsets_file):
did = did.strip()
img_file = osp.join(dataset_dir, 'img/%s.jpg' % did)
img = img.transpose(2, 0, 1)
img = torch.from_numpy(img).float()
lbl = torch.from_numpy(lbl).long()
return img, lbl
def untransform(self, img, lbl):
img = img.numpy()
img = img.transpose(1, 2, 0)
img += self.mean_bgr
img = img.astype(np.uint8)
img = img[:, :, ::-1]
lbl = lbl.numpy()
return img, lbl
class VOC2011ClassSeg(VOCClassSegBase):
def __init__(self, root, split='train', transform=False):
super(VOC2011ClassSeg, self).__init__(
root, split=split, transform=transform)
pkg_root = osp.join(osp.dirname(osp.realpath(__file__)), '..')
imgsets_file = osp.join(
pkg_root, 'ext/fcn.berkeleyvision.org',
'data/pascal/seg11valid.txt')
dataset_dir = osp.join(self.root, 'VOC/VOCdevkit/VOC2012')
for did in open(imgsets_file):
did = did.strip()
img_file = osp.join(dataset_dir, 'JPEGImages/%s.jpg' % did)
lbl_file = osp.join(dataset_dir, 'SegmentationClass/%s.png' % did)
self.files['seg11valid'].append({'img': img_file, 'lbl': lbl_file})