How to use the toolz.assoc function in toolz

To help you get started, we’ve selected a few toolz examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github enigmampc / catalyst / tests / pipeline / test_term.py View on Github external
def test_parameterized_term_default_value(self):
        defaults = {'a': 'default for a', 'b': 'default for b'}

        class F(Factor):
            params = defaults

            inputs = (SomeDataSet.foo,)
            dtype = 'f8'
            window_length = 5

        assert_equal(F().params, defaults)
        assert_equal(F(a='new a').params, assoc(defaults, 'a', 'new a'))
        assert_equal(F(b='new b').params, assoc(defaults, 'b', 'new b'))
        assert_equal(
            F(a='new a', b='new b').params,
            {'a': 'new a', 'b': 'new b'},
        )
github mrocklin / slides / images / timeseries.py View on Github external
'node_attr': {'color': 'white',
                        'fontcolor': '#FFFFFF',
                        'penwidth': '3'},
          'edge_attr': {'color': 'white',
                        'penwidth': '3'}}

df.value.resample('1w').mean().visualize('resample.svg', **kwargs)

df = dd.demo.make_timeseries('2010-01-01', '2010-08-30',
                             {'value': float, 'name': str, 'id': int},
                             freq='10s',
                             partition_freq='1M',
                             seed=1)


df.value.rolling(100).mean().visualize('rolling.svg', **assoc(kwargs,
'rankdir', 'LR'))
github nubank / fklearn / src / fklearn / training / regression.py View on Github external
shap_output = {"shap_values": shap_values,
                           "shap_expected_value": np.repeat(shap_expected_value, len(shap_values))}

            col_dict = merge(col_dict, shap_output)

        return new_df.assign(**col_dict)

    p.__doc__ = learner_pred_fn_docstring("xgb_regression_learner", shap=True)

    log = {'xgb_regression_learner': {
        'features': features,
        'target': target,
        'prediction_column': prediction_column,
        'package': "xgboost",
        'package_version': xgb.__version__,
        'parameters': assoc(params, "num_estimators", num_estimators),
        'feature_importance': bst.get_score(),
        'training_samples': len(df)},
        'object': bst}

    return p, p(df), log
github bcbio / bcbio-nextgen / scripts / utils / tcga_to_bcbio.py View on Github external
def rebatch_metadata_by_experiment(metadata):
    normal, normal_rest = prioritize_normals(metadata)
    batch = metadata[0]["participant"]
    tumor_batch = [tz.assoc(x, "batch", batch) for x in metadata
                   if x["sample_type"] in PRIORITIZED_TUMOR_CODES.keys()]
    normal = [tz.assoc(normal, "batch", batch)] if normal else []
    # run each non priority normal as its own tumor sample with no control
    normal_rest = [tz.assoc(x, "batch", batch + "-" + x["sample_type"]) for x
                   in normal_rest]
    normal_rest = [tz.assoc(x, "phenotype", "tumor") for x in normal_rest]
    all_batches = normal + normal_rest + tumor_batch
    return all_batches
github blaze / blaze / blaze / compute / pyfunc.py View on Github external
def _print_python(expr, leaves=None):
    child, scope = print_python(leaves, expr._child)
    funcname = next(funcnames)
    return ('%s(%s)' % (funcname, child),
            toolz.assoc(scope, funcname, expr.func))
github nubank / fklearn / src / fklearn / training / classification.py View on Github external
prediction_column : str
        The name of the column with the predictions from the model.
        If a multiclass problem, additional prediction_column_i columns will be added for i in range(0,n_classes).

    weight_column : str, optional
        The name of the column with scores to weight the data.

    encode_extra_cols : bool (default: True)
        If True, treats all columns in `df` with name pattern fklearn_feat__col==val` as feature columns.
    """

    import xgboost as xgb

    params = extra_params if extra_params else {}
    params = assoc(params, "eta", learning_rate)
    params = params if "objective" in params else assoc(params, "objective", 'binary:logistic')

    weights = df[weight_column].values if weight_column else None

    features = features if not encode_extra_cols else expand_features_encoded(df, features)

    dtrain = xgb.DMatrix(df[features].values, label=df[target].values, feature_names=map(str, features), weight=weights)

    bst = xgb.train(params, dtrain, num_estimators)

    def p(new_df: pd.DataFrame, apply_shap: bool = False) -> pd.DataFrame:

        dtest = xgb.DMatrix(new_df[features].values, feature_names=map(str, features))

        pred = bst.predict(dtest)
        if params["objective"] == "multi:softprob":
            col_dict = {prediction_column + "_" + str(key): value
github DualSpark / cloudformation-environmentbase / src / environmentbase / patterns / base_network.py View on Github external
def _get_subnet_config_w_az(self, network_config):
        az_count = int(network_config.get('az_count', 2))
        subnet_config = network_config.get('subnet_config', {})

        for subnet in subnet_config:
            for az in range(az_count):
                newsubnet = assoc(subnet, 'AZ', az)
                yield newsubnet
github kasbah / aioredux / examples / todo_thunk.py View on Github external
def todo_app(state, action):
    if action['type'] == ActionTypes.ADD_TODO:
        todos = state['todos'] + (action['text'],)
        return toolz.assoc(state, 'todos', todos)
    elif action['type'] == ActionTypes.COMPLETE_TODO:
        todos = state['todos'][:action['index']] + state['todos'][action['index'] + 1:]
        return toolz.assoc(state, 'todos', todos)
    else:
        return state
github nubank / fklearn / src / fklearn / training / classification.py View on Github external
shap_output = {"shap_values": shap_values,
                               "shap_expected_value": np.repeat(shap_expected_value, len(shap_values))}

            col_dict = merge(col_dict, shap_output)

        return new_df.assign(**col_dict)

    p.__doc__ = learner_pred_fn_docstring("catboost_classification_learner", shap=True)

    log = {'catboost_classification_learner': {
        'features': features,
        'target': target,
        'prediction_column': prediction_column,
        'package': "catboost",
        'package_version': catboost.__version__,
        'parameters': assoc(params, "num_estimators", num_estimators),
        'feature_importance': cbr.feature_importances_,
        'training_samples': len(df)},
        'object': cbr}

    return p, p(df), log