How to use the tiledb.Domain function in tiledb

To help you get started, we’ve selected a few tiledb examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github TileDB-Inc / TileDB-Py / examples / fragments_consolidation.py View on Github external
def create_array():
    # The array will be 4x4 with dimensions "rows" and "cols", with domain [1,4] and space tiles 2x2.
    dom = tiledb.Domain(tiledb.Dim(name="rows", domain=(1, 4), tile=2, dtype=np.int32),
                        tiledb.Dim(name="cols", domain=(1, 4), tile=2, dtype=np.int32))

    # The array will be dense with a single attribute "a" so each (i,j) cell can store an integer.
    schema = tiledb.ArraySchema(domain=dom, sparse=False,
                                attrs=[tiledb.Attr(name="a", dtype=np.int32)])

    # Create the (empty) array on disk.
    tiledb.DenseArray.create(array_name, schema)
github TileDB-Inc / TileDB-Py / examples / libtiledb / tiledb_array_schema.py View on Github external
def main():

    ctx = tiledb.Ctx()

    # create dimensions
    d1 = tiledb.Dim(ctx, "", domain=(1, 1000), tile=10, dtype="uint64")
    d2 = tiledb.Dim(ctx, "d2", domain=(101, 10000), tile=100, dtype="uint64")

    # create domain
    domain = tiledb.Domain(ctx, d1, d2)

    # create attributes
    a1 = tiledb.Attr(ctx, "", dtype="int32,int32,int32")
    a2 = tiledb.Attr(ctx, "a2", compressor=("gzip", -1), dtype="float32")

    # create sparse array with schema
    schema = tiledb.SparseArray(ctx, "sparse_array_schema",
                                domain=domain, attrs=(a1, a2),
                                capacity=10,
                                tile_order='row-major',
                                cell_order='col-major',
                                coords_compressor=('zstd', 4),
                                offsets_compressor=('blosc-lz', 5))
    schema.dump()

    # Print from schema
github TileDB-Inc / TileDB-Py / examples / variable_length.py View on Github external
def create_array():
    ctx = tiledb.Ctx()

    dom = tiledb.Domain(tiledb.Dim(name="rows", domain=(1, 4), tile=4, dtype=np.int64),
                        tiledb.Dim(name="cols", domain=(1, 4), tile=4, dtype=np.int64),
                        ctx=ctx)

    attrs = [
        tiledb.Attr(name="a1", var=True, dtype='U', ctx=ctx),
        tiledb.Attr(name="a2", var=True, dtype=np.int64, ctx=ctx)
        ]

    schema = tiledb.ArraySchema(domain=dom, sparse=False,
                                attrs=attrs,
                                ctx=ctx)

    tiledb.Array.create(array_name, schema, ctx=ctx)

    return schema
github TileDB-Inc / TileDB-Py / examples / reading_dense_layouts.py View on Github external
def create_array():
    # The array will be 4x4 with dimensions "rows" and "cols", with domain [1,4].
    dom = tiledb.Domain(tiledb.Dim(name="rows", domain=(1, 4), tile=2, dtype=np.int32),
                        tiledb.Dim(name="cols", domain=(1, 4), tile=2, dtype=np.int32))

    # The array will be dense with a single attribute "a" so each (i,j) cell can store an integer.
    schema = tiledb.ArraySchema(domain=dom, sparse=False,
                                attrs=[tiledb.Attr(name="a", dtype=np.int32)])

    # Create the (empty) array on disk.
    tiledb.DenseArray.create(array_name, schema)
github TileDB-Inc / TileDB-Py / examples / quickstart_sparse.py View on Github external
def create_array():
    # The array will be 4x4 with dimensions "rows" and "cols", with domain [1,4].
    dom = tiledb.Domain(tiledb.Dim(name="rows", domain=(1, 4), tile=4, dtype=np.int32),
                        tiledb.Dim(name="cols", domain=(1, 4), tile=4, dtype=np.int32))

    # The array will be sparse with a single attribute "a" so each (i,j) cell can store an integer.
    schema = tiledb.ArraySchema(domain=dom, sparse=True,
                                attrs=[tiledb.Attr(name="a", dtype=np.int32)])

    # Create the (empty) array on disk.
    tiledb.SparseArray.create(array_name, schema)
github TileDB-Inc / TileDB-Py / examples / libtiledb / tiledb_sparse_create.py View on Github external
def main():
    ctx = tiledb.Ctx()

    # Create dimensions
    d1 = tiledb.Dim(ctx, "d1", domain=(1, 4), tile=2, dtype="uint64")
    d2 = tiledb.Dim(ctx, "d2", domain=(1, 4), tile=2, dtype="uint64")

    # Create domain
    domain = tiledb.Domain(ctx, d1, d2)

    # Create attributes
    a1 = tiledb.Attr(ctx, "a1", compressor=('blosc-lz', -1), dtype="int32")
    a2 = tiledb.Attr(ctx, "a2", compressor=("gzip", -1), dtype="S10")
    a3 = tiledb.Attr(ctx, "a3", compressor=('zstd', -1), dtype='float32,float32')

    # Create sparse array
    tiledb.SparseArray(ctx, "my_sparse_array",
                       domain=domain,
                       attrs=(a1, a2, a3),
                       capacity=2,
                       cell_order='row-major',
                       tile_order='row-major')
github TileDB-Inc / TileDB-Py / tiledb / dataframe_.py View on Github external
[tiledb.ZstdFilter(1, ctx=ctx)])

        if coords_filters is None:
            coords_filters = tiledb.FilterList(
                [tiledb.ZstdFilter(1, ctx=ctx)])

        if nrows:
            if full_domain is None:
                full_domain = False

        # create the domain and attributes
        # if sparse==None then this function may return a default based on types
        dims, sparse = create_dims(ctx, dataframe, index_dims, sparse=sparse,
                           tile=tile, full_domain=full_domain)

        domain = tiledb.Domain(
           *dims,
           ctx = ctx
        )

        attrs, attr_metadata = attrs_from_df(dataframe,
                                             index_dims=index_dims,
                                             filters=attrs_filters,
                                             column_types=column_types)

        # now create the ArraySchema
        schema = tiledb.ArraySchema(
            domain=domain,
            attrs=attrs,
            cell_order=cell_order,
            tile_order=tile_order,
            coords_filters=coords_filters,
github TileDB-Inc / TileDB-Py / benchmarks / bcolz_bench.py View on Github external
def create_array():

    # The array will be 4x4 with dimensions "rows" and "cols", with domain [1,4].
    dom = tiledb.Domain(ctx, 
            tiledb.Dim(ctx, name="rows", domain=(0, (TEST_ARRAY.shape[0] - 1)), 
                       tile=10000, dtype=np.int32))

    # The array will be dense with a single attribute "a" so each (i,j) cell can store an integer.
    schema = tiledb.ArraySchema(ctx, domain=dom, sparse=False,
                                attrs=[tiledb.Attr(ctx, name="a", dtype=np.float64)])

    # Create the (empty) array on disk.
    tiledb.DenseArray.create(tiledb_array_name, schema)