How to use the tfrecord.torch.dataset.MultiTFRecordDataset function in tfrecord

To help you get started, we’ve selected a few tfrecord examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github vahidk / tfrecord / tfrecord / torch / dataset.py View on Github external
def __init__(self,
                 data_pattern: str,
                 index_pattern: typing.Union[str, None],
                 splits: typing.Dict[str, float],
                 description: typing.Union[typing.List[str], typing.Dict[str, str], None] = None,
                 shuffle_queue_size: typing.Optional[int] = None,
                 transform: typing.Callable[[dict], typing.Any] = None) -> None:
        super(MultiTFRecordDataset, self).__init__()
        self.data_pattern = data_pattern
        self.index_pattern = index_pattern
        self.splits = splits
        self.description = description
        self.shuffle_queue_size = shuffle_queue_size
        self.transform = transform