How to use the textblob.classifiers.NaiveBayesClassifier function in textblob

To help you get started, we’ve selected a few textblob examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github sloria / TextBlob / tests / test_blob.py View on Github external
('I am tired of this stuff.', 'neg'),
    ("I can't deal with this", 'neg'),
    ('He is my sworn enemy!', 'neg'),
    ('My boss is horrible.', 'neg')
]

test = [
    ('The beer was good.', 'pos'),
    ('I do not enjoy my job', 'neg'),
    ("I ain't feeling dandy today.", 'neg'),
    ("I feel amazing!", 'pos'),
    ('Gary is a friend of mine.', 'pos'),
    ("I can't believe I'm doing this.", 'neg')
]

classifier = NaiveBayesClassifier(train)

class WordListTest(TestCase):

    def setUp(self):
        self.words = 'Beautiful is better than ugly'.split()
        self.mixed = ['dog', 'dogs', 'blob', 'Blobs', 'text']

    def test_len(self):
        wl = tb.WordList(['Beautiful', 'is', 'better'])
        assert_equal(len(wl), 3)

    def test_slicing(self):
        wl = tb.WordList(self.words)
        first = wl[0]
        assert_true(isinstance(first, tb.Word))
        assert_equal(first, 'Beautiful')
github sloria / TextBlob / tests / test_classifiers.py View on Github external
def test_init_with_tsv_file(self):
        with open(TSV_FILE) as fp:
            cl = NaiveBayesClassifier(fp)
        assert_equal(cl.classify("I feel happy this morning"), 'pos')
        training_sentence = cl.train_set[0][0]
        assert_true(isinstance(training_sentence, unicode))
github sloria / TextBlob / tests / test_classifiers.py View on Github external
class MockRedisFormat(formats.BaseFormat):
            def __init__(self, client, port):
                self.client = client
                self.port = port

            @classmethod
            def detect(cls, stream):
                return True

            def to_iterable(self):
                return redis_train

        formats.register('redis', MockRedisFormat)
        mock_redis = mock.Mock()
        cl = NaiveBayesClassifier(mock_redis, format='redis', port=1234)
        assert_equal(cl.train_set, redis_train)
github nschaetti / pyTweetBot / learning / TextBlobModel.py View on Github external
def __init__(self):
        """
        Constructor
        """
        super(TextBlobModel, self).__init__()

        # Classifier
        self._cl = NaiveBayesClassifier(train_set=[])
    # end __init__
github Ankushr785 / Emotion-recognition-from-tweets / emotion_recognizer_nbc.py View on Github external
train = data.iloc[:x,:].reset_index(drop = True)
test = data.iloc[x:,:].reset_index(drop = True)
    
from textblob.classifiers import NaiveBayesClassifier as NBC

training_corpus = []

for k in range(len(train)):
    training_corpus.append((train.content[k], train.sentiment[k]))
    
test_corpus = []

for l in range(len(test)):
    test_corpus.append((test.content[l], test.sentiment[l]))

model = NBC(training_corpus)

print(model.accuracy(test_corpus))

predictions = []
for m in range(len(test)):
    predictions.append(model.classify(test.content[m]))
    
predictions_df = pd.DataFrame({'Content':test.content, 'Emotion_predicted':predictions, 'Emotion_actual':test.sentiment})
predictions_df.to_csv('naive_emotion_recognizer.csv', index = False)

elapsed_time = time.time() - start_time
print ("processing time:", elapsed_time, "seconds")
github benhoff / vexparser / examples / classify.py View on Github external
'what are you doing at the moment',
                         'what are you working on',
                         'what you making')

experience_utterances = [(x, 'experience') for x in experience_utterances]
environment_utterances = [(x, 'enivornment') for x in environment_utterances]
working_on_utterances = [(x, 'working') for x in working_on_utterances]

# FIXME: find better way to flatten lists together
training_set = []
training_set.extend(experience_utterances)
training_set.extend(environment_utterances)
training_set.extend(working_on_utterances)


classifier = NaiveBayesClassifier(training_set)
print(classifier.show_informative_features(), classifier.labels())

bogus_utterances = (
        'if you going to use nltk u may want to check this out spacy .io',
        'sup people? I see the weather\'s getting better over there, Ben.',
        'i had the same problem your having so thats my i made my own.',
        'try http, instead of https'
        )

# TODO: Figure out how to make this stronger
dual_utterance = ('how long have you been coding and what IDE do you use',)

test_utterances = ('what are you making',
                   'hey that nyancat is cool, how do you get that?')

for t in test_utterances:
github PacktPublishing / Hands-On-Data-Structures-and-Algorithms-with-Python-Second-Edition / Chapter14 / hello_classifier.py View on Github external
from textblob.classifiers import NaiveBayesClassifier 
train = [ 
        ('I love this sandwich.', 'pos'), 
        ('This is an amazing shop!', 'pos'), 
        ('We feel very good about these beers.', 'pos'), 
        ('That is my best sword.', 'pos'), 
        ('This is an awesome post', 'pos'), 
        ('I do not like this cafe', 'neg'), 
        ('I am tired of this bed.', 'neg'), 
        ("I can't deal with this", 'neg'), 
        ('She is my sworn enemy!', 'neg'), 
        ('I never had a caring mom.', 'neg') 
] 

cl = NaiveBayesClassifier(train) 


print(cl.classify("I just love breakfast")) 
print(cl.classify("Yesterday was Sunday")) 
print(cl.classify("Why can't he pay my bills")) 
print(cl.classify("They want to kill the president of Bantu"))
github nkpng2k / news_article_sentiment_analysis / train_classifier.py View on Github external
pol_labels = pol_df['labels'].copy()
pol_labels[pol_mask] = 'pos'
pol_labels[~pol_mask] = 'neg'
pol_df['etc'] = pol_labels
pol_df
nb_training = set()

for i, row in pol_df.iterrows():
    nb_training.add((row[0], row[2]))
for i, row in adj_df.iterrows():
    nb_training.add((row[0], row[2]))

nb_training

nbc = NaiveBayesClassifier(nb_training)
prob_dist = nbc.prob_classify('trump hates racism')
prob_dist.max()
prob_dist.prob('neg')

nb_name = 'naivebayesclassifier.pkl'
with open(nb_name, 'wb') as f:
    pickle.dump(nbc, f)

lin_reg_training = {}

for i, row in adj_df.iterrows():
    lin_reg_training[row[0]] = round(row[1]/10.0, 3)
for i, row in pol_df.iterrows():
    lin_reg_training[row[0]] = round(row[1]/10.0, 3)

with open('sentiment_lexicon.pkl', 'wb') as f: