Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def get_sentence_examples(self, questions, prefix):
data_list = []
for index, data in enumerate(questions):
data = data.strip().split('\t')
guid = '%s-%d' % (prefix, index)
text_a = tokenization.convert_to_unicode(str(data[0]))
text_b = tokenization.convert_to_unicode(str(data[1]))
label = str(data[2])
data_list.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return data_list
def get_sentence_examples(self, questions, prefix):
data_list = []
for index, data in enumerate(questions):
data = data.strip().split('\t')
guid = '%s-%d' % (prefix, index)
text_a = tokenization.convert_to_unicode(str(data[0]))
text_b = tokenization.convert_to_unicode(str(data[1]))
label = str(data[2])
data_list.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return data_list
def _to_example(sentences):
import re
"""
sentences to InputExample
:param sentences: list of strings
:return: list of InputExample
"""
unique_id = 0
for ss in sentences:
line = tokenization.convert_to_unicode(ss)
if not line:
continue
line = line.strip()
text_a = None
text_b = None
m = re.match(r"^(.*) \|\|\| (.*)$", line)
if m is None:
text_a = line
else:
text_a = m.group(1)
text_b = m.group(2)
yield InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b)
unique_id += 1
input_masks.append(input_mask)
# Zero-pad up to the sequence length.
while len(input_ids) < seq_length:
input_ids.append(0)
input_mask.append(0)
input_type_ids.append(0)
assert len(input_ids) == seq_length
assert len(input_mask) == seq_length
assert len(input_type_ids) == seq_length
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("unique_id: %s" % (example.unique_id))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info(
"input_type_ids: %s" % " ".join([str(x) for x in input_type_ids]))
yield InputFeatures(
unique_id=example.unique_id,
tokens=tokens,
input_ids=input_ids,
input_mask=input_mask,
input_type_ids=input_type_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_id = label_map[example.label]
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("guid: %s" % (example.guid))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
tf.logging.info("label: %s (id = %d)" % (example.label, label_id))
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id)
return feature
def __init__(self, max_seq_len=32, batch_size=32, layer_indexes=[-2], model_dir='', output_dir=''):
"""
init BertVector
:param batch_size: Depending on your memory default is 32
"""
self.max_seq_length = max_seq_len
self.layer_indexes = layer_indexes
self.gpu_memory_fraction = 1
self.model_dir = model_dir
vocab_file = os.path.join(model_dir, 'vocab.txt')
config_name = os.path.join(model_dir, 'bert_config.json')
ckpt_name = os.path.join(model_dir, 'bert_model.ckpt')
self.graph_path = optimize_graph(layer_indexes=layer_indexes, config_name=config_name, ckpt_name=ckpt_name,
max_seq_len=max_seq_len, output_dir=output_dir)
self.tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file, do_lower_case=True)
self.batch_size = batch_size
self.estimator = self.get_estimator()
self.input_queue = Queue(maxsize=1)
self.output_queue = Queue(maxsize=1)
self.predict_thread = Thread(target=self.predict_from_queue, daemon=True)
self.predict_thread.start()
self.sentence_len = 0
def __init__(self, data_dir='', model_dir='', output_dir='', batch_size=128, max_seq_len=32,
num_train_epochs=10, learning_rate=0.00005, gpu_memory_fraction=0.9):
self.model_dir = model_dir
self.vocab_file = os.path.join(model_dir, 'vocab.txt')
self.config_name = os.path.join(model_dir, 'bert_config.json')
self.ckpt_name = os.path.join(model_dir, 'bert_model.ckpt')
self.output_dir = output_dir
self.mode = None
self.max_seq_len = max_seq_len
self.tokenizer = tokenization.FullTokenizer(vocab_file=self.vocab_file, do_lower_case=True)
self.batch_size = batch_size
self.estimator = None
self.processor = TrainProcessor()
tf.logging.set_verbosity(tf.logging.INFO)
self.learning_rate = learning_rate
self.data_dir = data_dir
self.num_train_epochs = num_train_epochs
self.gpu_memory_fraction = gpu_memory_fraction