How to use tensorpack - 10 common examples

To help you get started, we’ve selected a few tensorpack examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github osmr / imgclsmob / tensorflow_ / tensorflowcv / models / others / tpack / shufflenet.py View on Github external
@under_name_scope()
def channel_shuffle(l, group):
    in_shape = l.get_shape().as_list()
    in_channel = in_shape[1]
    assert in_channel % group == 0, in_channel
    l = tf.reshape(l, [-1, in_channel // group, group] + in_shape[-2:])
    l = tf.transpose(l, [0, 2, 1, 3, 4])
    l = tf.reshape(l, [-1, in_channel] + in_shape[-2:])
    return l
github PatWie / tensorflow-recipes / FaceRecognition / ssh.py View on Github external
    @under_name_scope
    def context_module(self, x, channels, name):
        # see Figure 4 (SSH Context Module)
        with tf.variable_scope(name):
            with argscope([tf.layers.conv2d], kernel_size=3, activation=tf.nn.relu, padding='same'):
                c1 = tf.layers.conv2d(x, channels // 2, name='conv1')
                # upper path
                c2 = tf.layers.conv2d(c1, channels // 2, name='conv2')
                # lower path
                c3 = tf.layers.conv2d(c1, channels // 2, name='conv3a')
                c3 = tf.layers.conv2d(c3, channels // 2, name='conv3b')
                return tf.concatenate([c2, c3], axis=-1)
github amiralansary / rl-medical / examples / AutomaticViewPlanning / DQN / common.py View on Github external
###############################################################################

def eval_model_multithread(pred, nr_eval, get_player_fn):
    """
    Args:
        pred (OfflinePredictor): state -> Qvalue
    """
    NR_PROC = min(multiprocessing.cpu_count() // 2, 8)
    with pred.sess.as_default():
        mean_score, max_score, mean_dist, max_dist = eval_with_funcs([pred] * NR_PROC, nr_eval, get_player_fn)
    logger.info("Average Score: {}; Max Score: {}; Average Distance: {}; Max Distance: {}".format(mean_score, max_score, mean_dist, max_dist))

###############################################################################

class Evaluator(Callback):

    def __init__(self, nr_eval, input_names, output_names,
                 get_player_fn, directory, files_list = None):
        self.directory = directory
        self.files_list = files_list
        self.eval_episode = nr_eval
        self.input_names = input_names
        self.output_names = output_names
        self.get_player_fn = get_player_fn

    def _setup_graph(self):
        NR_PROC = min(multiprocessing.cpu_count() // 2, 20)
        self.pred_funcs = [self.trainer.get_predictor(
            self.input_names, self.output_names)] * NR_PROC

    def _trigger(self):
github YangZeyu95 / unofficial-implement-of-openpose / pose_dataset.py View on Github external
ds = MapDataComponent(ds, pose_flip)
        ds = MapDataComponent(ds, pose_resize_shortestedge_random)
        ds = MapDataComponent(ds, pose_crop_random)
        ds = MapData(ds, pose_to_img)
        # augs = [
        #     imgaug.RandomApplyAug(imgaug.RandomChooseAug([
        #         imgaug.GaussianBlur(max_size=3)
        #     ]), 0.7)
        # ]
        # ds = AugmentImageComponent(ds, augs)
        ds = PrefetchData(ds, 1000, multiprocessing.cpu_count()-1)
    else:
        ds = MultiThreadMapData(ds, nr_thread=16, map_func=read_image_url, buffer_size=1000)
        ds = MapDataComponent(ds, pose_resize_shortestedge_fixed)
        ds = MapDataComponent(ds, pose_crop_center)
        ds = MapData(ds, pose_to_img)
        ds = PrefetchData(ds, 100, multiprocessing.cpu_count() // 4)

    return ds
github iamhankai / ghostnet / tensorflow / imagenet_utils.py View on Github external
assert name in ['train', 'val', 'test']
    assert datadir is not None
    assert isinstance(augmentors, list)
    isTrain = name == 'train'
    
    #parallel = 1
    
    if parallel is None:
        parallel = min(40, multiprocessing.cpu_count() // 2)  # assuming hyperthreading
    if isTrain:
        ds = dataset.ILSVRC12(datadir, name, meta_dir=meta_dir, shuffle=True)
        ds = AugmentImageComponent(ds, augmentors, copy=False)
        if parallel < 16:
            logger.warn("DataFlow may become the bottleneck when too few processes are used.")
        ds = PrefetchDataZMQ(ds, parallel)
        ds = BatchData(ds, batch_size, remainder=False)
    else:
        ds = dataset.ILSVRC12Files(datadir, name, meta_dir= meta_dir, shuffle=False)
        aug = imgaug.AugmentorList(augmentors)

        def mapf(dp):
            fname, cls = dp
            im = cv2.imread(fname, cv2.IMREAD_COLOR)
            im = aug.augment(im)
            return im, cls
        ds = MultiThreadMapData(ds, parallel, mapf, buffer_size=2000, strict=True)
        ds = BatchData(ds, batch_size, remainder=True)
        ds = PrefetchDataZMQ(ds, 1)
    return ds
github microsoft / petridishnn / petridish / data / imagenet.py View on Github external
dtype='float32')[::-1, ::-1]
                                 )]),
            imgaug.Clip(),
            imgaug.Flip(horiz=True),
            imgaug.ToUint8()
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(256),
            imgaug.CenterCrop((input_size, input_size)),
            imgaug.ToUint8()
        ]
    ds = AugmentImageComponent(ds, augmentors, copy=False)
    if do_multiprocess:
        ds = PrefetchDataZMQ(ds, min(24, multiprocessing.cpu_count()))
    ds = BatchData(ds, options.batch_size // options.nr_gpu, remainder=not isTrain)
    return ds
github tensorpack / tensorpack / examples / ImageNetModels / imagenet_utils.py View on Github external
assert name in ['train', 'val', 'test']
    isTrain = name == 'train'
    assert datadir is not None
    if augmentors is None:
        augmentors = fbresnet_augmentor(isTrain)
    assert isinstance(augmentors, list)
    if parallel is None:
        parallel = min(40, multiprocessing.cpu_count() // 2)  # assuming hyperthreading

    if isTrain:
        ds = dataset.ILSVRC12(datadir, name, shuffle=True)
        ds = AugmentImageComponent(ds, augmentors, copy=False)
        if parallel < 16:
            logger.warn("DataFlow may become the bottleneck when too few processes are used.")
        ds = MultiProcessRunnerZMQ(ds, parallel)
        ds = BatchData(ds, batch_size, remainder=False)
    else:
        ds = dataset.ILSVRC12Files(datadir, name, shuffle=False)
        aug = imgaug.AugmentorList(augmentors)

        def mapf(dp):
            fname, cls = dp
            im = cv2.imread(fname, cv2.IMREAD_COLOR)
            im = aug.augment(im)
            return im, cls
        ds = MultiThreadMapData(ds, parallel, mapf, buffer_size=2000, strict=True)
        ds = BatchData(ds, batch_size, remainder=True)
        ds = MultiProcessRunnerZMQ(ds, 1)
    return ds
github microsoft / petridishnn / petridish / data / speech_commands.py View on Github external
def get_augmented_speech_commands_data(subset, options,
        do_multiprocess=True, shuffle=True):
    isTrain = subset == 'train' and do_multiprocess
    shuffle = shuffle if shuffle is not None else isTrain

    ds = SpeechCommandsDataFlow(os.path.join(options.data_dir, 'speech_commands_v0.02'),
        subset, shuffle, None)
    if isTrain:
        add_noise_func = functools.partial(_add_noise, noises=ds.noises)
    ds = MapDataComponent(ds, _pad_or_clip_to_desired_sample, index=0)
    ds = MapDataComponent(ds, _to_float, index=0)
    if isTrain:
        ds = MapDataComponent(ds, _time_shift, index=0)
        ds = MapData(ds, add_noise_func)
    ds = BatchData(ds, options.batch_size // options.nr_gpu, remainder=not isTrain)
    if do_multiprocess:
        ds = PrefetchData(ds, 4, 4)
    return ds
github tensorpack / tensorpack / examples / ImageNetModels / imagenet_utils.py View on Github external
Returns: A DataFlow which produces BGR images and labels.

    See explanations in the tutorial:
    http://tensorpack.readthedocs.io/tutorial/efficient-dataflow.html
    """
    assert name in ['train', 'val', 'test']
    isTrain = name == 'train'
    assert datadir is not None
    if augmentors is None:
        augmentors = fbresnet_augmentor(isTrain)
    assert isinstance(augmentors, list)
    if parallel is None:
        parallel = min(40, multiprocessing.cpu_count() // 2)  # assuming hyperthreading

    if isTrain:
        ds = dataset.ILSVRC12(datadir, name, shuffle=True)
        ds = AugmentImageComponent(ds, augmentors, copy=False)
        if parallel < 16:
            logger.warn("DataFlow may become the bottleneck when too few processes are used.")
        ds = MultiProcessRunnerZMQ(ds, parallel)
        ds = BatchData(ds, batch_size, remainder=False)
    else:
        ds = dataset.ILSVRC12Files(datadir, name, shuffle=False)
        aug = imgaug.AugmentorList(augmentors)

        def mapf(dp):
            fname, cls = dp
            im = cv2.imread(fname, cv2.IMREAD_COLOR)
            im = aug.augment(im)
            return im, cls
        ds = MultiThreadMapData(ds, parallel, mapf, buffer_size=2000, strict=True)
        ds = BatchData(ds, batch_size, remainder=True)
github tensorpack / tensorpack / tensorpack / tfutils / export.py View on Github external
# we cannot use "self.config.session_creator.create_session()" here since it finalizes the graph
            sess = tfv1.Session(config=tfv1.ConfigProto(allow_soft_placement=True))
            self.config.session_init._run_init(sess)

            builder = tfv1.saved_model.builder.SavedModelBuilder(filename)

            prediction_signature = tfv1.saved_model.signature_def_utils.build_signature_def(
                inputs=inputs_signatures,
                outputs=outputs_signatures,
                method_name=tfv1.saved_model.signature_constants.PREDICT_METHOD_NAME)

            builder.add_meta_graph_and_variables(
                sess, tags,
                signature_def_map={signature_name: prediction_signature})
            builder.save()
            logger.info("SavedModel created at {}.".format(filename))