Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
__var__task0_____time.shape += (1,)
plot_0_0_0 = __var__task0_____time
# DataGenerator
__var__task0_____S1 = np.concatenate([process_trace(sim['[S1]']) for sim in task0])
if len(__var__task0_____S1.shape) == 1:
__var__task0_____S1.shape += (1,)
plot_0_0_1 = __var__task0_____S1
# --------------------------------------------------------
# Outputs
# --------------------------------------------------------
# Output
stacked=False
if not stacked:
fig = te.getPlottingEngine().newFigure(title='plot_0')
else:
fig = te.getPlottingEngine().newStackedFigure(title='plot_0')
if plot_0_0_0.shape[1] > 1:
for k in range(plot_0_0_0.shape[1]):
if k == 0:
fig.addXYDataset(plot_0_0_0[:,k], plot_0_0_1[:,k], color='C0', tag='tag0', name='task0.S1')
else:
fig.addXYDataset(plot_0_0_0[:,k], plot_0_0_1[:,k], color='C0', tag='tag0')
else:
for k in range(plot_0_0_0.shape[1]):
if k == 0:
fig.addXYDataset(plot_0_0_0[:,k], plot_0_0_1[:,k], color='C0', tag='tag0', name='task0.S1')
else:
fig.addXYDataset(plot_0_0_0[:,k], plot_0_0_1[:,k], color='C0', tag='tag0')
fig.render()
# DataGenerator
__var__task0_____S1 = np.concatenate([process_trace(sim['[S1]']) for sim in task0])
if len(__var__task0_____S1.shape) == 1:
__var__task0_____S1.shape += (1,)
plot_0_0_1 = __var__task0_____S1
# --------------------------------------------------------
# Outputs
# --------------------------------------------------------
# Output
stacked=False
if not stacked:
fig = te.getPlottingEngine().newFigure(title='plot_0')
else:
fig = te.getPlottingEngine().newStackedFigure(title='plot_0')
if plot_0_0_0.shape[1] > 1:
for k in range(plot_0_0_0.shape[1]):
if k == 0:
fig.addXYDataset(plot_0_0_0[:,k], plot_0_0_1[:,k], color='C0', tag='tag0', name='task0.S1')
else:
fig.addXYDataset(plot_0_0_0[:,k], plot_0_0_1[:,k], color='C0', tag='tag0')
else:
for k in range(plot_0_0_0.shape[1]):
if k == 0:
fig.addXYDataset(plot_0_0_0[:,k], plot_0_0_1[:,k], color='C0', tag='tag0', name='task0.S1')
else:
fig.addXYDataset(plot_0_0_0[:,k], plot_0_0_1[:,k], color='C0', tag='tag0')
fig.render()
:return:
:rtype:
"""
self.inputStr = inputStr
self.workingDir = workingDir
self.python = sys.version
self.platform = platform.platform()
self.createOutputs = createOutputs
self.saveOutputs = saveOutputs
self.outputDir = outputDir
self.plotFormat = "pdf"
self.reportFormat = "csv"
if not plottingEngine:
plottingEngine = te.getPlottingEngine()
self.plottingEngine = plottingEngine
if self.outputDir:
if not os.path.exists(outputDir):
raise IOError("outputDir does not exist: {}".format(outputDir))
info = SEDMLTools.readSEDMLDocument(inputStr, workingDir)
self.doc = info['doc']
self.inputType = info['inputType']
self.workingDir = info['workingDir']
# parse the models (resolve the source models & the applied changes for all models)
model_sources, model_changes = SEDMLTools.resolveModelChanges(self.doc)
self.model_sources = model_sources
self.model_changes = model_changes
:param show: show=True (default) shows the plot, use show=False to plot multiple simulations in one plot
:param showlegend: Whether to show the legend or not.
:param mode: Can be set to 'markers' to generate scatter plots, or 'dash' for dashed lines.
::
import numpy as np, tellurium as te
result = np.array([[1,2,3,4], [7.2,6.5,8.8,10.5], [9.8, 6.5, 4.3,3.0]])
te.plot(result[:,0], result[:,1], name='Second column', show=False)
te.plot(result[:,0], result[:,2], name='Third column', show=False)
te.show(reset=False) # does not reset the plot after showing plot
te.plot(result[:,0], result[:,3], name='Fourth column', show=False)
te.show()
"""
from .. import getPlottingEngine
# global _plot_index
return getPlottingEngine().plot(x, y, show=show, **kwargs)
def show(reset=True):
from .. import getPlottingEngine
return getPlottingEngine().show(reset=reset)
if tag:
kwargs['tag'] = tag
if labels:
kwargs['labels'] = labels
if figsize:
kwargs['figsize'] = figsize
if savefig:
kwargs['savefig'] = savefig
if dpi:
kwargs['dpi'] = dpi
if alpha:
kwargs['alpha'] = alpha
# FIXME: provide the additional parameters to the plotting engine
engine = getPlottingEngine()
if show:
# show the plot immediately
engine.plotTimecourse(result, **kwargs)
else:
# otherwise, accumulate the traces
engine.accumulateTimecourse(result, **kwargs)
def plot_text(x, y, text, show=True, **kwargs):
from .. import getPlottingEngine
from numpy import array
if len(x.shape) < 1:
x = array([x])
if len(y.shape) < 1:
y = array([y])
if not isinstance(text, list):
text = [text]
return getPlottingEngine().plot_text(x, y, text=text, show=show, **kwargs)
def nextFigure(*args, **kwargs):
from .. import getPlottingEngine
if nextFigure.tiledFigure is not None:
fig = nextFigure.tiledFigure.nextFigure(*args, **kwargs)
#if nextFigure.tiledFigure.isExhausted():
#nextFigure.tiledFigure = None
return fig
else:
return getPlottingEngine().newFigure(*args, **kwargs)
nextFigure.tiledFigure = None
def newTiledFigure(*args, **kwargs):
from .. import getPlottingEngine
nextFigure.tiledFigure = getPlottingEngine().newTiledFigure(*args, **kwargs)
return nextFigure.tiledFigure