Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
fittype)
else:
(t2s_limited, s0_limited,
t2s_full, s0_full) = decay.fit_decay_ts(catd, tes, mask, masksum,
fittype)
# set a hard cap for the T2* map/timeseries
# anything that is 10x higher than the 99.5 %ile will be reset to 99.5 %ile
cap_t2s = stats.scoreatpercentile(t2s_limited.flatten(), 99.5,
interpolation_method='lower')
LGR.debug('Setting cap on T2* map at {:.5f}'.format(cap_t2s * 10))
t2s_limited[t2s_limited > cap_t2s * 10] = cap_t2s
LGR.info('Computing optimal combination')
# optimally combine data
OCcatd = combine.make_optcom(catd, tes, mask, t2s=t2s_full,
combmode=combmode)
# clean up numerical errors
for arr in (OCcatd, s0_limited, t2s_limited):
np.nan_to_num(arr, copy=False)
s0_limited[s0_limited < 0] = 0
t2s_limited[t2s_limited < 0] = 0
io.filewrite(t2s_limited, op.join(out_dir, 't2sv.nii'), ref_img)
io.filewrite(s0_limited, op.join(out_dir, 's0v.nii'), ref_img)
io.filewrite(t2s_full, op.join(out_dir, 't2svG.nii'), ref_img)
io.filewrite(s0_full, op.join(out_dir, 's0vG.nii'), ref_img)
io.filewrite(OCcatd, op.join(out_dir, 'ts_OC.nii'), ref_img)
# set a hard cap for the T2* map
# anything that is 10x higher than the 99.5 %ile will be reset to 99.5 %ile
cap_t2s = stats.scoreatpercentile(t2s_limited.flatten(), 99.5,
interpolation_method='lower')
LGR.debug('Setting cap on T2* map at {:.5f}'.format(cap_t2s * 10))
t2s_limited[t2s_limited > cap_t2s * 10] = cap_t2s
io.filewrite(t2s_limited, op.join(out_dir, 't2sv.nii'), ref_img)
io.filewrite(s0_limited, op.join(out_dir, 's0v.nii'), ref_img)
if verbose:
io.filewrite(t2s_full, op.join(out_dir, 't2svG.nii'), ref_img)
io.filewrite(s0_full, op.join(out_dir, 's0vG.nii'), ref_img)
# optimally combine data
data_oc = combine.make_optcom(catd, tes, mask, t2s=t2s_full, combmode=combmode)
# regress out global signal unless explicitly not desired
if 'gsr' in gscontrol:
catd, data_oc = gsc.gscontrol_raw(catd, data_oc, n_echos, ref_img)
if mixm is None:
# Identify and remove thermal noise from data
dd, n_components = decomposition.tedpca(catd, data_oc, combmode, mask,
t2s_limited, t2s_full, ref_img,
tes=tes, algorithm=tedpca,
source_tes=source_tes,
kdaw=10., rdaw=1.,
out_dir=out_dir,
verbose=verbose,
low_mem=low_mem)
mmix_orig = decomposition.tedica(dd, n_components, fixed_seed,