Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
calc.t_set_heating = np.zeros(timesteps) # in Kelvin
calc.t_set_cooling = np.zeros(timesteps) + 600 # in Kelvin
calc.heater_limit = np.zeros((timesteps, 3)) + 1e10
calc.cooler_limit = np.zeros((timesteps, 3)) - 1e10
q_ig = np.zeros(timesteps_day)
for q in range(int(6 * timesteps_day / 24), int(18 * timesteps_day / 24)):
q_ig[q] = 1000
q_ig = np.tile(q_ig, 60)
calc.internal_gains = q_ig
t_air, q_air_hc = calc.simulate()
T_air_mean = hourly_average(data=t_air-273.15, times_per_hour=times_per_hour)
T_air_1 = T_air_mean[0:24]
T_air_10 = T_air_mean[216:240]
T_air_60 = T_air_mean[1416:1440]
this_path = os.path.dirname(os.path.abspath(__file__))
ref_file = 'case03_res.csv'
ref_path = os.path.join(this_path, 'inputs', ref_file)
# Load reference results
(T_air_ref_1, T_air_ref_10, T_air_ref_60) = vdic.load_res(ref_path)
T_air_ref_1 = T_air_ref_1[:, 0]
T_air_ref_10 = T_air_ref_10[:, 0]
T_air_ref_60 = T_air_ref_60[:, 0]
if plot_res:
calc.heater_limit = np.zeros((timesteps, 3)) + 1e10
calc.cooler_limit = np.zeros((timesteps, 3)) - 1e10
calc.internal_gains_rad = source_igRad
calc.internal_gains = Q_ig
calc.solar_rad_in = solarRad_win_in
calc.equal_air_temp = weatherTemperature
calc.equal_air_temp = calc._eq_air_temp(
h_sol=solarRad_wall, t_black_sky=t_black_sky)
t_air, q_air_hc = calc.simulate()
T_air_mean = hourly_average(data=t_air-273.15, times_per_hour=times_per_hour)
T_air_1 = T_air_mean[0:24]
T_air_10 = T_air_mean[216:240]
T_air_60 = T_air_mean[1416:1440]
ref_file = 'case10_res.csv'
ref_path = os.path.join(this_path, 'inputs', ref_file)
# Load reference results
(T_air_ref_1, T_air_ref_10, T_air_ref_60) = vdic.load_res(ref_path)
T_air_ref_1 = T_air_ref_1[:, 0]
T_air_ref_10 = T_air_ref_10[:, 0]
T_air_ref_60 = T_air_ref_60[:, 0]
if plot_res:
plot_result(T_air_1, T_air_ref_1, "Results day 1", "temperature")
calc.t_set_heating = np.zeros(timesteps) # in Kelvin
calc.t_set_cooling = np.zeros(timesteps) + 600 # in Kelvin
calc.heater_limit = np.zeros((timesteps, 3)) + 1e10
calc.cooler_limit = np.zeros((timesteps, 3)) - 1e10
q_ig = np.zeros(timesteps_day)
for q in range(int(6 * timesteps_day / 24), int(18 * timesteps_day / 24)):
q_ig[q] = 1000
q_ig = np.tile(q_ig, 60)
calc.internal_gains = q_ig
t_air, q_air_hc = calc.simulate()
T_air_mean = hourly_average(data=t_air-273.15, times_per_hour=times_per_hour)
T_air_1 = T_air_mean[0:24]
T_air_10 = T_air_mean[216:240]
T_air_60 = T_air_mean[1416:1440]
this_path = os.path.dirname(os.path.abspath(__file__))
ref_file = 'case01_res.csv'
ref_path = os.path.join(this_path, 'inputs', ref_file)
# Load reference results
(T_air_ref_1, T_air_ref_10, T_air_ref_60) = load_res(ref_path)
T_air_ref_1 = T_air_ref_1[:, 0]
T_air_ref_10 = T_air_ref_10[:, 0]
T_air_ref_60 = T_air_ref_60[:, 0]
calc.equal_air_temp = np.zeros(timesteps) + 295.15
calc.solar_rad_in = np.zeros((timesteps, 1))
calc.t_set_heating = prepare_set_temperature(timesteps_day)
calc.t_set_cooling = prepare_set_temperature(timesteps_day)
calc.heater_limit = np.zeros((timesteps, 3))
calc.heater_limit[:, 0] = 500
calc.cooler_limit = np.zeros((timesteps, 3))
calc.cooler_limit[:, 0] = - 500
calc.internal_gains_rad = prepare_internal_gains_rad(timesteps_day)
t_air, q_air_hc = calc.simulate()
Q_hc_mean = hourly_average(data=q_air_hc, times_per_hour=times_per_hour)
Q_hc_1 = Q_hc_mean[0:24]
Q_hc_10 = Q_hc_mean[216:240]
Q_hc_60 = Q_hc_mean[1416:1440]
this_path = os.path.dirname(os.path.abspath(__file__))
ref_file = 'case07_res.csv'
ref_path = os.path.join(this_path, 'inputs', ref_file)
# Load reference results
(Q_hc_ref_1, Q_hc_ref_10, Q_hc_ref_60) = vdic.load_res(ref_path)
Q_hc_ref_1 = Q_hc_ref_1[:, 0]
Q_hc_ref_10 = Q_hc_ref_10[:, 0]
Q_hc_ref_60 = Q_hc_ref_60[:, 0]
if plot_res:
calc.heater_limit = np.zeros((timesteps, 3)) + 1e10
calc.cooler_limit = np.zeros((timesteps, 3)) - 1e10
calc.internal_gains_rad = source_igRad
calc.internal_gains = Q_ig
calc.solar_rad_in = solarRad_win_in
calc.equal_air_temp = calc._eq_air_temp(
h_sol=solarRad_wall_tiled,
t_black_sky=t_black_sky)
t_air, q_air_hc = calc.simulate()
T_air_mean = hourly_average(data=t_air-273.15, times_per_hour=times_per_hour)
T_air_1 = T_air_mean[0:24]
T_air_10 = T_air_mean[216:240]
T_air_60 = T_air_mean[1416:1440]
ref_file = 'case09_res.csv'
ref_path = os.path.join(this_path, 'inputs', ref_file)
# Load reference results
(T_air_ref_1, T_air_ref_10, T_air_ref_60) = vdic.load_res(ref_path)
T_air_ref_1 = T_air_ref_1[:, 0]
T_air_ref_10 = T_air_ref_10[:, 0]
T_air_ref_60 = T_air_ref_60[:, 0]
if plot_res:
plot_result(T_air_1, T_air_ref_1, "Results day 1", "temperature")
calc.t_set_heating = prepare_set_temperature(timesteps_day)
calc.t_set_cooling = prepare_set_temperature(timesteps_day)
calc.heater_limit = np.zeros((timesteps, 3))
calc.heater_limit[:, 0] = 500
calc.heater_order = np.array([1, 2, 3])
calc.cooler_limit = np.zeros((timesteps, 3))
calc.cooler_limit[:, 0] = -500
calc.cooler_order = [2, 1, 3]
calc.internal_gains_rad = prepare_internal_gains_rad(timesteps_day)
calc.debug = True
t_air, q_air_hc, data_debug = calc.simulate()
T_air_mean = hourly_average(data=t_air - 273.15, times_per_hour=times_per_hour)
Q_hc_mean = hourly_average(data=q_air_hc, times_per_hour=times_per_hour)
Q_hc_1 = Q_hc_mean[0:24]
Q_hc_10 = Q_hc_mean[216:240]
Q_hc_60 = Q_hc_mean[1416:1440]
T_air_1 = T_air_mean[0:24]
T_air_10 = T_air_mean[216:240]
T_air_60 = T_air_mean[1416:1440]
this_path = os.path.dirname(os.path.abspath(__file__))
ref_file = "case11_res.csv"
ref_path = os.path.join(this_path, "inputs", ref_file)
# Load reference results
(load_res_1, load_res_10, load_res_60) = vdic.load_res(ref_path)
calc.t_set_heating = np.zeros(timesteps) # in Kelvin
calc.t_set_cooling = np.zeros(timesteps) + 600 # in Kelvin
calc.heater_limit = np.zeros((timesteps, 3)) + 1e10
calc.cooler_limit = np.zeros((timesteps, 3)) - 1e10
calc.internal_gains_rad = source_igRad
calc.internal_gains = Q_ig
calc.equal_air_temp = equalAirTemp
calc.solar_rad_in = solarRad_in
calc.vent_rate = ventRate
t_air, q_air_hc = calc.simulate()
T_air_mean = hourly_average(data=t_air - 273.15, times_per_hour=times_per_hour)
T_air_1 = T_air_mean[0:24]
T_air_10 = T_air_mean[216:240]
T_air_60 = T_air_mean[1416:1440]
ref_file = 'case12_res.csv'
ref_path = os.path.join(this_path, 'inputs', ref_file)
# Load reference results
(T_air_ref_1, T_air_ref_10, T_air_ref_60) = vdic.load_res(ref_path)
T_air_ref_1 = T_air_ref_1[:,0]
T_air_ref_10 = T_air_ref_10[:,0]
T_air_ref_60 = T_air_ref_60[:,0]
if plot_res:
plot_result(T_air_1, T_air_ref_1, "Results day 1", "temperature")
calc = VDICore(tz)
calc.equal_air_temp = np.zeros(timesteps) + 295.15
calc.solar_rad_in = np.zeros((timesteps, 1))
calc.t_set_heating = np.zeros(timesteps) # in Kelvin
calc.t_set_cooling = np.zeros(timesteps) + 600 # in Kelvin
calc.heater_limit = np.zeros((timesteps, 3)) + 1e10
calc.cooler_limit = np.zeros((timesteps, 3)) - 1e10
calc.internal_gains_rad = prepare_internal_gains_rad(timesteps_day)
t_air, q_air_hc = calc.simulate()
T_air_mean = hourly_average(data=t_air-273.15, times_per_hour=times_per_hour)
T_air_1 = T_air_mean[0:24]
T_air_10 = T_air_mean[216:240]
T_air_60 = T_air_mean[1416:1440]
this_path = os.path.dirname(os.path.abspath(__file__))
ref_file = 'case04_res.csv'
ref_path = os.path.join(this_path, 'inputs', ref_file)
# Load reference results
(T_air_ref_1, T_air_ref_10, T_air_ref_60) = vdic.load_res(ref_path)
T_air_ref_1 = T_air_ref_1[:, 0]
T_air_ref_10 = T_air_ref_10[:, 0]
T_air_ref_60 = T_air_ref_60[:, 0]
if plot_res: