How to use the symengine.sin function in symengine

To help you get started, we’ve selected a few symengine examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github neurophysik / jitcode / examples / SW_of_Roesslers.py View on Github external
def f():
		for i in range(N):
			coupling_sum = sum( y(3*j)-y(3*i) for j in range(N) if A[i,j] )
			coupling_term = k * symengine.sin(t) * coupling_sum
			yield -ω[i] * y(3*i+1) - y(3*i+2) + coupling_term
			yield  ω[i] * y(3*i) + a*y(3*i+1)
			coupling_term_2 = k * (sum_z-N*y(3*i+2))
			yield b + y(3*i+2) * (y(3*i) - c) + coupling_term_2
github symengine / symengine.py / benchmarks / expand6b.py View on Github external
def run_benchmark(n):
    a0 = symbols("a0")
    a1 = symbols("a1")
    e = a0 + a1
    f = 0;
    for i in range(2, n):
        s = symbols("a%s" % i)
        e = e + sin(s)
        f = f + sin(s)
    f = -f
    t1 = clock()
    e = expand(e**2)
    e = e.xreplace({a0: f})
    e = expand(e)
    t2 = clock()
    print("%s ms" % (1000 * (t2 - t1)))
github neurophysik / jitcode / examples / kuramoto_network.py View on Github external
def kuramotos_f():
	for i in range(n):
		coupling_sum = sum(
				sin(y(j)-y(i))
				for j in range(n)
				if A[j,i]
			)
		yield omega[i] + c/(n-1)*coupling_sum
github exa-analytics / exatomic / exatomic / algorithms / basis.py View on Github external
for _ in range(L):
            der = der.diff(_x)
        for m in range(L + 1):
            pol = (1 - _x ** 2) ** (m/2)
            if m: der = der.diff(_x)
            leg = phase[m] / den * (pol * der).subs({_x: _z / _r})
            if not m:
                sh[L][m] = rac * leg
                continue
            N = 2 ** 0.5 * phase[m]
            facs = facts[L - m] / facts[L + m]
            norm = facs ** 0.5
            phi = (m * _x).subs({_x: 'arctan2(_y, _x)'})
            fun = cos(phi)
            sh[L][m] = N * rac * norm * leg * fun
            fun = sin(phi)
            sh[L][-m] = N * rac * norm * leg * fun
    return sh
github neurophysik / jitcode / examples / benchmark.py View on Github external
def kuramotos_f():
	for i in range(n):
		coupling_sum = sum(
				sin(y(j)-y(i))
				for j in range(n)
				if A[j,i]
			)
		yield omega[i] + c/(n-1)*coupling_sum
github symengine / symengine.py / benchmarks / expand6b.py View on Github external
def run_benchmark(n):
    a0 = symbols("a0")
    a1 = symbols("a1")
    e = a0 + a1
    f = 0;
    for i in range(2, n):
        s = symbols("a%s" % i)
        e = e + sin(s)
        f = f + sin(s)
    f = -f
    t1 = clock()
    e = expand(e**2)
    e = e.xreplace({a0: f})
    e = expand(e)
    t2 = clock()
    print("%s ms" % (1000 * (t2 - t1)))
github neurophysik / jitcdde / examples / kuramoto_network.py View on Github external
def kuramotos():
		for i in range(n):
			yield ω + c/(n-1)*sum(
						sin(y(j,t-Ï„[i,j])-y(i))
						for j in range(n)
						if A[j,i]
					)
github neurophysik / jitcdde / examples / laminar_chaos.py View on Github external
"""

from jitcdde import t, y, jitcdde
from symengine import sin
import numpy as np

T = 200
A = 0.9/2/np.pi
Ï„_0 = 1.50
f = lambda z: 4*z*(1-z)
Ï„ = Ï„_0 + A*sin(2*np.pi*t)

model = [ T*( -y(0) + f(y(0,t-Ï„)) ) ]

DDE = jitcdde(model,max_delay=Ï„_0+A,verbose=False)
DDE.past_from_function([0.4+0.2*sin(t)])
DDE.set_integration_parameters(max_step=0.01,first_step=0.01)
DDE.integrate_blindly(Ï„_0+A,0.01)

for time in DDE.t + 100 + np.arange(0,10,0.01):
	print(DDE.integrate(time)[0])