How to use the swat.option_context function in swat

To help you get started, we’ve selected a few swat examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github sassoftware / python-dlpy / dlpy / utils.py View on Github external
for i in range(max_instance)])
    # parse and create dljoin id column
    label_col_info = conn.columninfo(output).ColumnInfo
    filename_col_length = label_col_info.loc[label_col_info['Column'] == 'idjoin', ['FormattedLength']].values[0][0]

    image_sas_code = "length idjoin $ {0}; fn=scan(_path_,{1},'/'); idjoin = inputc(substr(fn, 1, length(fn)-4),'{0}.');".format(filename_col_length,
                                                                                                                                 len(data_path.split('\\')) - 2)
    img_tbl = conn.CASTable(det_img_table, computedvars=['idjoin'], computedvarsprogram=image_sas_code, vars=[{'name': '_image_'}])

    # join the image table and label table together
    res = conn.deepLearn.dljoin(table=img_tbl, annotation=output, id='idjoin',
                                casout={'name': output, 'replace': True, 'replication': 0})
    if res.severity > 0:
        raise DLPyError('ERROR: Fail to create the object detection table.')

    with sw.option_context(print_messages=False):
        for name in input_tbl_name:
            conn.table.droptable(name)
        for var in var_name:
            conn.table.droptable('output{}'.format(var))
        conn.table.droptable(det_img_table)

    print("NOTE: Object detection table is successfully created.")
    return var_order[2:]
github sassoftware / python-dlpy / dlpy / network.py View on Github external
weightFilePath=file_name, 
                                                 caslib=cas_lib_name)
                    else:
                        with sw.option_context(print_messages=False):
                            rt = self._retrieve_('deeplearn.dlimportmodelweights',
                                                 model=self.model_table,
                                                 modelWeights=dict(replace=True, name=self.model_name + '_weights'),
                                                 dataSpecs=data_spec,
                                                 textEmbeddingDim=embedding_dim,
                                                 formatType=format_type, 
                                                 weightFilePath=file_name, 
                                                 caslib=cas_lib_name)
                    
                else:
                    if has_gpu_model:
                        with sw.option_context(print_messages=False):
                            rt = self._retrieve_('deeplearn.dlimportmodelweights', model=self.model_table,
                                                 modelWeights=dict(replace=True,
                                                                   name=self.model_name + '_weights'),
                                                 formatType=format_type, weightFilePath=file_name,
                                                 gpuModel=use_gpu,
                                                 caslib=cas_lib_name)
                    else:
                        with sw.option_context(print_messages=False):
                            rt = self._retrieve_('deeplearn.dlimportmodelweights', model=self.model_table,
                                                 modelWeights=dict(replace=True,
                                                                   name=self.model_name + '_weights'),
                                                 formatType=format_type, weightFilePath=file_name,
                                                 caslib=cas_lib_name)

                # handle error or create necessary attributes
                if rt.severity > 1:
github sassoftware / python-dlpy / dlpy / network.py View on Github external
caslib=cas_lib_name,
                                                 labelTable=label_table)
                    else:
                        with sw.option_context(print_messages = False):
                            rt = self._retrieve_('deeplearn.dlimportmodelweights',
                                                 model=self.model_table,
                                                 modelWeights=dict(replace=True, name=self.model_name + '_weights'),
                                                 dataSpecs=data_spec,
                                                 textEmbeddingDim=embedding_dim,
                                                 formatType=format_type, 
                                                 weightFilePath=file_name, 
                                                 caslib=cas_lib_name,
                                                 labelTable=label_table)
                else:
                    if has_gpu_model:
                        with sw.option_context(print_messages = False):
                            rt = self._retrieve_('deeplearn.dlimportmodelweights', model=self.model_table,
                                                 modelWeights=dict(replace=True, name=self.model_name + '_weights'),
                                                 formatType=format_type, weightFilePath=file_name, caslib=cas_lib_name,
                                                 gpuModel=use_gpu,
                                                 labelTable=label_table)
                    else:
                        with sw.option_context(print_messages = False):
                            rt = self._retrieve_('deeplearn.dlimportmodelweights', model=self.model_table,
                                                 modelWeights=dict(replace=True, name=self.model_name + '_weights'),
                                                 formatType=format_type,
                                                 weightFilePath=file_name,
                                                 caslib=cas_lib_name,
                                                 labelTable=label_table)

                # handle error or create necessary attributes
                if rt.severity > 1:
github sassoftware / python-dlpy / dlpy / utils.py View on Github external
else:
        sep = '\\'

    # label variables, _ : category;
    yolo_var_name = ['_', '_x', '_y', '_width', '_height']
    coco_var_name = ['_', '_xmin', '_ymin', '_xmax', '_ymax']
    if coord_type.lower() == 'yolo':
        var_name = yolo_var_name
    elif coord_type.lower() == 'coco':
        var_name = coco_var_name
    image_size = _pair(image_size)  # ensure image_size is a pair
    det_img_table = random_name('DET_IMG')

    # loading _image_ and processing to required image size
    with caslibify_context(conn, data_path, 'load') as (caslib, path_after_caslib), \
            sw.option_context(print_messages=False):
        if caslib is None and path_after_caslib is None:
            print('Cannot create a caslib for the provided path. Please make sure that the path is accessible from'
                  'the CAS Server. Please also check if there is a subpath that is part of an existing caslib')

        res = conn.image.loadImages(path=path_after_caslib,
                                    recurse=False,
                                    labelLevels=-1,
                                    caslib=caslib,
                                    casout={'name': det_img_table, 'replace':True})
        if res.severity > 0:
            for msg in res.messages:
                if not msg.startswith('WARNING'):
                    print(msg)

        res = conn.image.processImages(table={'name': det_img_table},
                                       imagefunctions=[
github sassoftware / python-dlpy / dlpy / network.py View on Github external
if has_data_spec:
                    # run action with dataSpec option
                    if has_gpu_model and (not has_embedding_dim):
                        with sw.option_context(print_messages = False):
                            rt = self._retrieve_('deeplearn.dlimportmodelweights',
                                                 model=self.model_table,
                                                 modelWeights=dict(replace=True, name=self.model_name + '_weights'),
                                                 dataSpecs=data_spec,
                                                 gpuModel=use_gpu,
                                                 formatType=format_type, 
                                                 weightFilePath=file_name, 
                                                 caslib=cas_lib_name,
                                                 labelTable=label_table)
                    elif (not has_gpu_model) and (not has_embedding_dim):
                        with sw.option_context(print_messages = False):
                            rt = self._retrieve_('deeplearn.dlimportmodelweights',
                                                 model=self.model_table,
                                                 modelWeights=dict(replace=True, name=self.model_name + '_weights'),
                                                 dataSpecs=data_spec,
                                                 formatType=format_type, 
                                                 weightFilePath=file_name, 
                                                 caslib=cas_lib_name,
                                                 labelTable=label_table)
                    elif has_gpu_model and has_embedding_dim:
                        with sw.option_context(print_messages = False):
                            rt = self._retrieve_('deeplearn.dlimportmodelweights',
                                                 model=self.model_table,
                                                 modelWeights=dict(replace=True, name=self.model_name + '_weights'),
                                                 dataSpecs=data_spec,
                                                 gpuModel=use_gpu,
                                                 textEmbeddingDim=embedding_dim,
github sassoftware / python-dlpy / dlpy / utils.py View on Github external
def get_cas_host_type(conn):
    ''' Return a server type indicator '''
    with sw.option_context(print_messages = False):
        out = conn.about()
    ostype = out['About']['System']['OS Family']
    stype = 'mpp'
    htype = 'nohdfs'
    if out['server'].loc[0, 'nodes'] == 1:
        stype = 'smp'
    if ostype.startswith('LIN') or ostype.startswith('LX'):
        ostype = 'linux'
    elif ostype.startswith('WIN'):
        ostype = 'windows'
    elif ostype.startswith('OSX'):
        ostype = 'osx'
    else:
        raise ValueError('Unknown OS type: ' + ostype)

    # Check to see if HDFS is present
github sassoftware / python-dlpy / dlpy / utils.py View on Github external
Default: (416, 416)
    task : str, optional
        Specifies the task of table.
        Valid Values: object detection, instance segmentation
        Default: object detection

    Returns
    -------
    A list of variables that are the labels of the specified task

    '''

    # check parameters
    if coord_type.lower() not in ['yolo', 'coco']:
        raise ValueError('coord_type, {}, is not supported'.format(coord_type))
    with sw.option_context(print_messages=False):
        server_type = get_cas_host_type(conn).lower()
    local_os_type = platform.system()
    unix_type = server_type.startswith("lin") or server_type.startswith("osx")
    # check if local and server are same type of OS
    # in different os
    need_to_parse = True
    if (unix_type and local_os_type.startswith('Win')) or not (unix_type or local_os_type.startswith('Win')):
        if local_path is None:
            print('The txt files in data_path are used as annotation files.')
            need_to_parse = False
    else:
        local_path = data_path

    conn.retrieve('loadactionset', _messagelevel='error', actionset='image')
    conn.retrieve('loadactionset', _messagelevel = 'error', actionset = 'deepLearn')
    conn.retrieve('loadactionset', _messagelevel = 'error', actionset = 'transpose')
github sassoftware / python-dlpy / dlpy / network.py View on Github external
'support this parameter.')

                if has_data_spec:
                    # run action with dataSpec option
                    if has_gpu_model and (not has_embedding_dim):
                        with sw.option_context(print_messages=False):
                            rt = self._retrieve_('deeplearn.dlimportmodelweights',
                                                 model=self.model_table,
                                                 modelWeights=dict(replace=True, name=self.model_name + '_weights'),
                                                 dataSpecs=data_spec,
                                                 gpuModel=use_gpu,
                                                 formatType=format_type, 
                                                 weightFilePath=file_name, 
                                                 caslib=cas_lib_name)
                    elif (not has_gpu_model) and (not has_embedding_dim):
                        with sw.option_context(print_messages=False):
                            rt = self._retrieve_('deeplearn.dlimportmodelweights',
                                                 model=self.model_table,
                                                 modelWeights=dict(replace=True, name=self.model_name + '_weights'),
                                                 dataSpecs=data_spec,
                                                 formatType=format_type, 
                                                 weightFilePath=file_name, 
                                                 caslib=cas_lib_name)
                    elif has_gpu_model and has_embedding_dim:
                        with sw.option_context(print_messages=False):
                            rt = self._retrieve_('deeplearn.dlimportmodelweights',
                                                 model=self.model_table,
                                                 modelWeights=dict(replace=True, name=self.model_name + '_weights'),
                                                 dataSpecs=data_spec,
                                                 gpuModel=use_gpu,
                                                 textEmbeddingDim=embedding_dim,
                                                 formatType=format_type,
github sassoftware / python-dlpy / dlpy / network.py View on Github external
textEmbeddingDim=embedding_dim,
                                                 formatType=format_type, 
                                                 weightFilePath=file_name, 
                                                 caslib=cas_lib_name)
                    
                else:
                    if has_gpu_model:
                        with sw.option_context(print_messages=False):
                            rt = self._retrieve_('deeplearn.dlimportmodelweights', model=self.model_table,
                                                 modelWeights=dict(replace=True,
                                                                   name=self.model_name + '_weights'),
                                                 formatType=format_type, weightFilePath=file_name,
                                                 gpuModel=use_gpu,
                                                 caslib=cas_lib_name)
                    else:
                        with sw.option_context(print_messages=False):
                            rt = self._retrieve_('deeplearn.dlimportmodelweights', model=self.model_table,
                                                 modelWeights=dict(replace=True,
                                                                   name=self.model_name + '_weights'),
                                                 formatType=format_type, weightFilePath=file_name,
                                                 caslib=cas_lib_name)

                # handle error or create necessary attributes
                if rt.severity > 1:
                    for msg in rt.messages:
                        print(msg)
                    raise DLPyError('Cannot import model weights, there seems to be a problem.')

                # create attributes if necessary
                if not has_data_spec:
                    from dlpy.attribute_utils import create_extended_attributes
                    create_extended_attributes(self.conn, self.model_name, self.layers, data_spec)
github sassoftware / python-dlpy / dlpy / network.py View on Github external
caslib=cas_lib_name,
                                                 labelTable=label_table)
                    elif has_gpu_model and has_embedding_dim:
                        with sw.option_context(print_messages = False):
                            rt = self._retrieve_('deeplearn.dlimportmodelweights',
                                                 model=self.model_table,
                                                 modelWeights=dict(replace=True, name=self.model_name + '_weights'),
                                                 dataSpecs=data_spec,
                                                 gpuModel=use_gpu,
                                                 textEmbeddingDim=embedding_dim,
                                                 formatType=format_type, 
                                                 weightFilePath=file_name, 
                                                 caslib=cas_lib_name,
                                                 labelTable=label_table)
                    else:
                        with sw.option_context(print_messages = False):
                            rt = self._retrieve_('deeplearn.dlimportmodelweights',
                                                 model=self.model_table,
                                                 modelWeights=dict(replace=True, name=self.model_name + '_weights'),
                                                 dataSpecs=data_spec,
                                                 textEmbeddingDim=embedding_dim,
                                                 formatType=format_type, 
                                                 weightFilePath=file_name, 
                                                 caslib=cas_lib_name,
                                                 labelTable=label_table)
                else:
                    if has_gpu_model:
                        with sw.option_context(print_messages = False):
                            rt = self._retrieve_('deeplearn.dlimportmodelweights', model=self.model_table,
                                                 modelWeights=dict(replace=True, name=self.model_name + '_weights'),
                                                 formatType=format_type, weightFilePath=file_name, caslib=cas_lib_name,
                                                 gpuModel=use_gpu,