Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
The multi-dimensional matrix profile index where each row of the array
corresponds to each matrix profile index for a given dimension.
Notes
-----
`DOI: 10.1109/ICDM.2017.66 \
`__
See mSTAMP Algorithm
"""
hosts = list(dask_client.ncores().keys())
nworkers = len(hosts)
T = np.asarray(core.transpose_dataframe(T))
if T.ndim <= 1: # pragma: no cover
err = f"T is {T.ndim}-dimensional and must be greater than 1-dimensional"
raise ValueError(f"{err}")
core.check_dtype(T)
core.check_nan(T)
core.check_window_size(m)
d = T.shape[0]
n = T.shape[1]
k = n - m + 1
excl_zone = int(np.ceil(m / 4)) # See Definition 3 and Figure 3
M_T, Σ_T = _multi_compute_mean_std(T, m)
μ_Q, σ_Q = _multi_compute_mean_std(T, m)
1-D matrix profile and the second row is the 2-D matrix profile).
I : ndarray
The multi-dimensional matrix profile index where each row of the array
corresponds to each matrix profile index for a given dimension.
Notes
-----
`DOI: 10.1109/ICDM.2017.66 \
`__
See mSTAMP Algorithm
"""
T = np.asarray(core.transpose_dataframe(T))
if T.ndim <= 1: # pragma: no cover
err = f"T is {T.ndim}-dimensional and must be greater than 1-dimensional"
raise ValueError(f"{err}")
core.check_dtype(T)
core.check_nan(T)
core.check_window_size(m)
d = T.shape[0]
n = T.shape[1]
k = n - m + 1
excl_zone = int(np.ceil(m / 4)) # See Definition 3 and Figure 3
M_T, Σ_T = _multi_compute_mean_std(T, m)
μ_Q, σ_Q = _multi_compute_mean_std(T, m)