How to use the stable-baselines.stable_baselines.bench.monitor.LoadMonitorResultsError function in stable-baselines

To help you get started, we’ve selected a few stable-baselines examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github harvard-edge / quarl / stable-baselines / stable_baselines / bench / monitor.py View on Github external
def load_results(path: str) -> pandas.DataFrame:
    """
    Load all Monitor logs from a given directory path matching ``*monitor.csv`` and ``*monitor.json``

    :param path: (str) the directory path containing the log file(s)
    :return: (pandas.DataFrame) the logged data
    """
    # get both csv and (old) json files
    monitor_files = (glob(os.path.join(path, "*monitor.json")) + get_monitor_files(path))
    if not monitor_files:
        raise LoadMonitorResultsError("no monitor files of the form *%s found in %s" % (Monitor.EXT, path))
    data_frames = []
    headers = []
    for file_name in monitor_files:
        with open(file_name, 'rt') as file_handler:
            if file_name.endswith('csv'):
                first_line = file_handler.readline()
                assert first_line[0] == '#'
                header = json.loads(first_line[1:])
                data_frame = pandas.read_csv(file_handler, index_col=None)
                headers.append(header)
            elif file_name.endswith('json'):  # Deprecated json format
                episodes = []
                lines = file_handler.readlines()
                header = json.loads(lines[0])
                headers.append(header)
                for line in lines[1:]:

stable-baselines

A fork of OpenAI Baselines, implementations of reinforcement learning algorithms.

MIT
Latest version published 4 years ago

Package Health Score

60 / 100
Full package analysis

Similar packages