How to use spreg - 10 common examples

To help you get started, we’ve selected a few spreg examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github pysal / spglm / spglm / glm.py View on Github external
def normalized_cov_params(self):
        return la.inv(spdot(self.w.T, self.w))
github pysal / spglm / spglm / iwls.py View on Github external
def _compute_betas(y, x):
    """
    compute MLE coefficients using iwls routine

    Methods: p189, Iteratively (Re)weighted Least Squares (IWLS),
    Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002).
    Geographically weighted regression: the analysis of spatially varying relationships.
    """
    xT = x.T
    xtx = spdot(xT, x)
    xtx_inv = la.inv(xtx)
    xtx_inv = sp.csr_matrix(xtx_inv)
    xTy = spdot(xT, y, array_out=False)
    betas = spdot(xtx_inv, xTy)
    return betas
github pysal / spglm / spglm / iwls.py View on Github external
def _compute_betas(y, x):
    """
    compute MLE coefficients using iwls routine

    Methods: p189, Iteratively (Re)weighted Least Squares (IWLS),
    Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002).
    Geographically weighted regression: the analysis of spatially varying relationships.
    """
    xT = x.T
    xtx = spdot(xT, x)
    xtx_inv = la.inv(xtx)
    xtx_inv = sp.csr_matrix(xtx_inv)
    xTy = spdot(xT, y, array_out=False)
    betas = spdot(xtx_inv, xTy)
    return betas
github pysal / spglm / spglm / iwls.py View on Github external
def _compute_betas(y, x):
    """
    compute MLE coefficients using iwls routine

    Methods: p189, Iteratively (Re)weighted Least Squares (IWLS),
    Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002).
    Geographically weighted regression: the analysis of spatially varying relationships.
    """
    xT = x.T
    xtx = spdot(xT, x)
    xtx_inv = la.inv(xtx)
    xtx_inv = sp.csr_matrix(xtx_inv)
    xTy = spdot(xT, y, array_out=False)
    betas = spdot(xtx_inv, xTy)
    return betas
github pysal / spglm / spglm / iwls.py View on Github external
while diff > tol and n_iter < max_iter:
        n_iter += 1
        w = family.weights(mu)
        z = v + (family.link.deriv(mu) * (y - mu))
        w = np.sqrt(w)
        if not isinstance(x, np.ndarray):
            w = sp.csr_matrix(w)
            z = sp.csr_matrix(z)
        wx = spmultiply(x, w, array_out=False)
        wz = spmultiply(z, w, array_out=False)
        if wi is None:
            n_betas = _compute_betas(wz, wx)
        else:
            n_betas, xtx_inv_xt = _compute_betas_gwr(wz, wx, wi)
        v = spdot(x, n_betas)
        mu = family.fitted(v)

        if isinstance(family, Poisson):
            mu = mu * offset

        diff = min(abs(n_betas - betas))
        betas = n_betas

    if wi is None:
        return betas, mu, wx, n_iter
    else:
        return betas, mu, v, w, z, xtx_inv_xt, n_iter
github pysal / spglm / spglm / glm.py View on Github external
def __init__(self, y, X, family=family.Gaussian(), offset=None, y_fix = None,
            constant=True):
        """
        Initialize class
        """
        self.n = USER.check_arrays(y, X)
        USER.check_y(y, self.n)
        self.y = y
        if constant:
            self.X = USER.check_constant(X)
        else:
            self.X = X
        self.family = family
        self.k = self.X.shape[1]
        if offset is None:
            self.offset = np.ones(shape=(self.n,1))
        else:
            self.offset = offset * 1.0
        if y_fix is None:
	        self.y_fix = np.zeros(shape=(self.n,1))
        else:
	        self.y_fix = y_fix
        self.fit_params = {}
github pysal / spglm / spglm / glm.py View on Github external
def __init__(self, y, X, family=family.Gaussian(), offset=None, y_fix = None,
            constant=True):
        """
        Initialize class
        """
        self.n = USER.check_arrays(y, X)
        USER.check_y(y, self.n)
        self.y = y
        if constant:
            self.X = USER.check_constant(X)
        else:
            self.X = X
        self.family = family
        self.k = self.X.shape[1]
        if offset is None:
            self.offset = np.ones(shape=(self.n,1))
        else:
            self.offset = offset * 1.0
        if y_fix is None:
	        self.y_fix = np.zeros(shape=(self.n,1))
        else:
	        self.y_fix = y_fix
github pysal / spglm / spglm / glm.py View on Github external
def __init__(self, y, X, family=family.Gaussian(), offset=None, y_fix = None,
            constant=True):
        """
        Initialize class
        """
        self.n = USER.check_arrays(y, X)
        USER.check_y(y, self.n)
        self.y = y
        if constant:
            self.X = USER.check_constant(X)
        else:
            self.X = X
        self.family = family
        self.k = self.X.shape[1]
        if offset is None:
            self.offset = np.ones(shape=(self.n,1))
        else:
            self.offset = offset * 1.0
        if y_fix is None:
	        self.y_fix = np.zeros(shape=(self.n,1))
        else:
	        self.y_fix = y_fix
        self.fit_params = {}
github pysal / spglm / spglm / iwls.py View on Github external
v = family.predict(y_off)
        mu = family.starting_mu(y)
    else:
        mu = family.starting_mu(y)
        v = family.predict(mu)

    while diff > tol and n_iter < max_iter:
        n_iter += 1
        w = family.weights(mu)
        z = v + (family.link.deriv(mu) * (y - mu))
        w = np.sqrt(w)
        if not isinstance(x, np.ndarray):
            w = sp.csr_matrix(w)
            z = sp.csr_matrix(z)
        wx = spmultiply(x, w, array_out=False)
        wz = spmultiply(z, w, array_out=False)
        if wi is None:
            n_betas = _compute_betas(wz, wx)
        else:
            n_betas, xtx_inv_xt = _compute_betas_gwr(wz, wx, wi)
        v = spdot(x, n_betas)
        mu = family.fitted(v)

        if isinstance(family, Poisson):
            mu = mu * offset

        diff = min(abs(n_betas - betas))
        betas = n_betas

    if wi is None:
        return betas, mu, wx, n_iter
    else:
github pysal / spglm / spglm / iwls.py View on Github external
y_off = family.starting_mu(y_off)
        v = family.predict(y_off)
        mu = family.starting_mu(y)
    else:
        mu = family.starting_mu(y)
        v = family.predict(mu)

    while diff > tol and n_iter < max_iter:
        n_iter += 1
        w = family.weights(mu)
        z = v + (family.link.deriv(mu) * (y - mu))
        w = np.sqrt(w)
        if not isinstance(x, np.ndarray):
            w = sp.csr_matrix(w)
            z = sp.csr_matrix(z)
        wx = spmultiply(x, w, array_out=False)
        wz = spmultiply(z, w, array_out=False)
        if wi is None:
            n_betas = _compute_betas(wz, wx)
        else:
            n_betas, xtx_inv_xt = _compute_betas_gwr(wz, wx, wi)
        v = spdot(x, n_betas)
        mu = family.fitted(v)

        if isinstance(family, Poisson):
            mu = mu * offset

        diff = min(abs(n_betas - betas))
        betas = n_betas

    if wi is None:
        return betas, mu, wx, n_iter

spreg

PySAL Spatial Econometric Regression in Python

BSD-3-Clause
Latest version published 3 days ago

Package Health Score

78 / 100
Full package analysis