Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def sync_record(filename, duration, fs, channels):
print('recording')
myrecording = sd.rec(int(duration * fs), samplerate=fs, channels=channels)
sd.wait()
sf.write(filename, myrecording, fs)
print('done recording')
def sync_record(filename, duration, fs, channels):
print('recording')
myrecording = sd.rec(int(duration * fs), samplerate=fs, channels=channels)
sd.wait()
sf.write(filename, myrecording, fs)
print('done recording')
def sync_record(filename, duration, fs, channels):
print('recording')
myrecording = sd.rec(int(duration * fs), samplerate=fs, channels=channels)
sd.wait()
sf.write(filename, myrecording, fs)
print('done recording')
def record_data(filename, duration, fs, channels):
# synchronous recording
print('recording')
myrecording = sd.rec(int(duration * fs), samplerate=fs, channels=channels)
sd.wait()
sf.write(filename, myrecording, fs)
print('done')
return filename
def record_data(filename, duration, fs, channels):
# synchronous recording
myrecording = sd.rec(int(duration * fs), samplerate=fs, channels=channels)
sd.wait()
sf.write(filename, myrecording, fs)
y, sr = librosa.load(filename)
rmse=np.mean(librosa.feature.rmse(y)[0])
os.remove(filename)
return rmse*1000
def recording(self, duration=5):
# read data from microphone
# duration is the length of time you want to record
self.duration = duration
self.voice = sd.rec(self.duration * self.fs, samplerate=self.fs, channels=self.ch, dtype='float64')
sd.wait()
self.voice = self.voice.T.copy()
print("Generating...")
for i in sorted(np.random.choice(len(dataset), n_samples)):
mel, wav_gt = dataset[i]
# out_gt_fpath = fileio.join(gen_path, "%s_%d_gt.wav" % (model_name, i))
# out_pred_fpath = fileio.join(gen_path, "%s_%d_pred.wav" % (model_name, i))
wav_gt = audio.unquantize_signal(wav_gt)
if use_mu_law:
wav_gt = audio.expand_signal(wav_gt)
sd.wait()
sd.play(wav_gt, 16000)
wav_pred = inference.infer_waveform(mel, normalize=False) # The dataloader already normalizes
sd.wait()
sd.play(wav_pred, 16000)
# audio.save_wav(out_pred_fpath, wav_pred)
# audio.save_wav(out_gt_fpath, wav_gt)
print('')
sd.wait()
speaker_id = "user_%02d" % i
i += 1
speaker_embed = encoder.embed_utterance(wav_source)[None, ...]
else:
speaker_embed, speaker_id, wav_source = get_random_embed()
print(speaker_id)
# Synthesize the text with the embedding
text = input("Text: ")
mel = synth.my_synthesize(speaker_embed, text)
wav_griffin = inv_mel_spectrogram(mel.T, hparams)
wav_griffin = np.concatenate((wav_griffin, [0] * hparams.sample_rate))
print("Griffin-lim:")
sd.play(wav_griffin, 16000)
wav_wavernn = vocoder.infer_waveform(mel.T)
wav_wavernn = np.concatenate((wav_wavernn, [0] * hparams.sample_rate))
sd.wait()
print("\nWave-RNN:")
sd.play(wav_wavernn, 16000)
sd.wait()
save_wav(wav_source, "../%s_%s.wav" % (speaker_id, "source"), 16000)
save_wav(wav_griffin, "../%s_%s.wav" % (speaker_id, "griffin"), 16000)
save_wav(wav_wavernn, "../%s_%s.wav" % (speaker_id, "wavernn"), 16000)
os.makedirs(out_dir, exist_ok=True)
#mel_file = os.path.join(mel_folder, mel_file)
from vlibs import fileio
# fnames = fileio.listdir('logs-two_outputs/mel-spectrograms/')
fnames = fileio.listdir('tacotron_output/eval/')
for i in range(1, len(fnames)):
# mel_file = 'logs-two_outputs/mel-spectrograms/mel-prediction-step-110000.npy'
mel_file = fileio.join('tacotron_output/eval/', fnames[i])
mel_spectro = np.load(mel_file) #.transpose()
wav = inv_mel_spectrogram(mel_spectro.T, hparams)
sounddevice.wait()
print(fnames[i])
sounddevice.play(wav, 16000)
sounddevice.wait()
quit()
save_wav(wav, os.path.join(out_dir, 'test_mel_{}.wav'.format(mel_file.replace('/', '_').replace('\\', '_').replace('.npy', ''))),
sr=hparams.sample_rate)
# In[3]:
from tacotron.utils.plot import *
plot_spectrogram(mel_spectro, path=os.path.join(out_dir, 'test_mel_{}.png'.format(mel_file.replace('/', '_').replace('\\', '_').replace('.npy', ''))))
# In[4]:
import argparse
import logging
log = logging.getLogger(__name__)
# To use, cd into helpers directory, run >> python demo/sound_card_demo.py "filename"
# Example: python demo/sound_card_demo.py "../static/sounds/chime.wav"
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("filename", help="audio file to be played back")
parser.add_argument("-d", "--device", type=int, help="device ID")
args = parser.parse_args()
try:
import sounddevice as sd
import soundfile as sf
devices = sd.query_devices()
print(devices)
data, fs = sf.read(args.filename, dtype='float32')
sd.play(data, fs, device=args.device, blocking=True)
status = sd.get_status()
if status:
log.warning(str(status))
except BaseException as e:
# This avoids printing the traceback, especially if Ctrl-C is used.
raise SystemExit(str(e))