How to use the snorkel.classification.DictDataLoader function in snorkel

To help you get started, we’ve selected a few snorkel examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github snorkel-team / snorkel / test / classification / test_multitask_classifier.py View on Github external
def test_remapped_labels(self):
        # Test additional label keys in the Y_dict
        # Without remapping, model should ignore them
        task_name = self.task1.name
        X = torch.FloatTensor([[i, i] for i in range(NUM_EXAMPLES)])
        Y = torch.ones(NUM_EXAMPLES).long()

        Y_dict = {task_name: Y, "other_task": Y}
        dataset = DictDataset(
            name="dataset", split="train", X_dict={"data": X}, Y_dict=Y_dict
        )
        dataloader = DictDataLoader(dataset, batch_size=BATCH_SIZE)

        model = MultitaskClassifier([self.task1])
        loss_dict, count_dict = model.calculate_loss(dataset.X_dict, dataset.Y_dict)
        self.assertIn("task1", loss_dict)

        # Test setting without remapping
        results = model.predict(dataloader)
        self.assertIn("task1", results["golds"])
        self.assertNotIn("other_task", results["golds"])
        scores = model.score([dataloader])
        self.assertIn("task1/dataset/train/accuracy", scores)
        self.assertNotIn("other_task/dataset/train/accuracy", scores)

        # Test remapped labelsets
        results = model.predict(dataloader, remap_labels={"other_task": task_name})
        self.assertIn("task1", results["golds"])
github snorkel-team / snorkel / test / classification / test_multitask_classifier.py View on Github external
def create_dataloader(task_name="task", split="train", **kwargs):
    X = torch.FloatTensor([[i, i] for i in range(NUM_EXAMPLES)])
    Y = torch.ones(NUM_EXAMPLES).long()

    dataset = DictDataset(
        name="dataset", split=split, X_dict={"data": X}, Y_dict={task_name: Y}
    )

    dataloader = DictDataLoader(dataset, batch_size=BATCH_SIZE, **kwargs)
    return dataloader
github snorkel-team / snorkel / test / classification / test_data.py View on Github external
torch.Tensor([1, 2, 3, 4]),
            torch.Tensor([1, 2, 3]),
            torch.Tensor([1, 2]),
            torch.Tensor([1]),
        ]

        y2 = torch.Tensor([1, 1, 1, 1, 1])

        dataset = DictDataset(
            name="new_data",
            split="train",
            X_dict={"data1": x1, "data2": x2},
            Y_dict={"task1": y1, "task2": y2},
        )

        dataloader1 = DictDataLoader(dataset=dataset, batch_size=2)

        x_batch, y_batch = next(iter(dataloader1))

        # Check if the dataloader is correctly constructed
        self.assertEqual(dataloader1.dataset.split, "train")
        self.assertTrue(torch.equal(x_batch["data1"], torch.Tensor([[1, 0], [1, 2]])))
        self.assertTrue(
            torch.equal(
                x_batch["data2"], torch.Tensor([[1, 2, 3, 4, 5], [1, 2, 3, 4, 0]])
            )
        )
        self.assertTrue(torch.equal(y_batch["task1"], torch.Tensor([0, 0])))
        self.assertTrue(torch.equal(y_batch["task2"], torch.Tensor([1, 1])))

        dataloader2 = DictDataLoader(dataset=dataset, batch_size=3)
github snorkel-team / snorkel / test / slicing / test_convergence.py View on Github external
def create_dataloader(df: pd.DataFrame, split: str) -> DictDataLoader:
    dataset = DictDataset(
        name="TestData",
        split=split,
        X_dict={
            "coordinates": torch.stack(
                (torch.tensor(df["x1"]), torch.tensor(df["x2"])), dim=1
            )
        },
        Y_dict={"task": torch.tensor(df["y"], dtype=torch.long)},
    )

    dataloader = DictDataLoader(
        dataset=dataset, batch_size=4, shuffle=(dataset.split == "train")
    )
    return dataloader
github snorkel-team / snorkel / test / classification / training / schedulers / test_schedulers.py View on Github external
dataset1 = DictDataset(
    "d1",
    "train",
    X_dict={"data": [0, 1, 2, 3, 4]},
    Y_dict={"labels": torch.LongTensor([1, 1, 1, 1, 1])},
)
dataset2 = DictDataset(
    "d2",
    "train",
    X_dict={"data": [5, 6, 7, 8, 9]},
    Y_dict={"labels": torch.LongTensor([2, 2, 2, 2, 2])},
)

dataloader1 = DictDataLoader(dataset1, batch_size=2)
dataloader2 = DictDataLoader(dataset2, batch_size=2)
dataloaders = [dataloader1, dataloader2]


class SequentialTest(unittest.TestCase):
    def test_sequential(self):
        scheduler = SequentialScheduler()
        data = []
        for (batch, dl) in scheduler.get_batches(dataloaders):
            X_dict, Y_dict = batch
            data.extend(X_dict["data"])
        self.assertEqual(data, sorted(data))

    def test_shuffled(self):
        random.seed(123)
        np.random.seed(123)
        torch.manual_seed(123)
github snorkel-team / snorkel / test / classification / test_data.py View on Github external
dataloader1 = DictDataLoader(dataset=dataset, batch_size=2)

        x_batch, y_batch = next(iter(dataloader1))

        # Check if the dataloader is correctly constructed
        self.assertEqual(dataloader1.dataset.split, "train")
        self.assertTrue(torch.equal(x_batch["data1"], torch.Tensor([[1, 0], [1, 2]])))
        self.assertTrue(
            torch.equal(
                x_batch["data2"], torch.Tensor([[1, 2, 3, 4, 5], [1, 2, 3, 4, 0]])
            )
        )
        self.assertTrue(torch.equal(y_batch["task1"], torch.Tensor([0, 0])))
        self.assertTrue(torch.equal(y_batch["task2"], torch.Tensor([1, 1])))

        dataloader2 = DictDataLoader(dataset=dataset, batch_size=3)

        x_batch, y_batch = next(iter(dataloader2))

        # Check if the dataloader with differet batch size is correctly constructed
        self.assertEqual(dataloader2.dataset.split, "train")
        self.assertTrue(
            torch.equal(
                x_batch["data1"], torch.Tensor([[1, 0, 0], [1, 2, 0], [1, 2, 3]])
            )
        )
        self.assertTrue(
            torch.equal(
                x_batch["data2"],
                torch.Tensor([[1, 2, 3, 4, 5], [1, 2, 3, 4, 0], [1, 2, 3, 0, 0]]),
            )
        )
github snorkel-team / snorkel-tutorials / visual_relation / visual_relation_tutorial.py View on Github external
from model import SceneGraphDataset, create_model

df_train["labels"] = label_model.predict(L_train)

if sample:
    TRAIN_DIR = "data/VRD/sg_dataset/samples"
else:
    TRAIN_DIR = "data/VRD/sg_dataset/sg_train_images"

dl_train = DictDataLoader(
    SceneGraphDataset("train_dataset", "train", TRAIN_DIR, df_train),
    batch_size=16,
    shuffle=True,
)

dl_valid = DictDataLoader(
    SceneGraphDataset("valid_dataset", "valid", TRAIN_DIR, df_valid),
    batch_size=16,
    shuffle=False,
)

# %% [markdown]
# #### Define Model Architecture

# %%
import torchvision.models as models

# initialize pretrained feature extractor
cnn = models.resnet18(pretrained=True)
model = create_model(cnn)

# %% [markdown]
github snorkel-team / snorkel-tutorials / multitask / multitask_tutorial.py View on Github external
# `DictDataloader` is a wrapper for `torch.utils.data.Dataloader`, which handles the collate function for `DictDataset` appropriately.

# %%
from snorkel.classification import DictDataset, DictDataLoader

dataloaders = []
for task_name in ["circle", "square"]:
    for split, X, Y in (
        ("train", X_train, Y_train),
        ("valid", X_valid, Y_valid),
        ("test", X_test, Y_test),
    ):
        X_dict = {f"{task_name}_data": torch.FloatTensor(X[task_name])}
        Y_dict = {f"{task_name}_task": torch.LongTensor(Y[task_name])}
        dataset = DictDataset(f"{task_name}Dataset", split, X_dict, Y_dict)
        dataloader = DictDataLoader(dataset, batch_size=32)
        dataloaders.append(dataloader)

# %% [markdown]
# We now have 6 data loaders, one for each split (`train`, `valid`, `test`) of each task (`circle_task` and `square_task`).

# %% [markdown]
# ## Define Model

# %% [markdown]
# Now we'll define the `MultitaskClassifier` model, a PyTorch multi-task classifier.
# We'll instantiate it from a list of `Tasks`.

# %% [markdown]
# ### Tasks

# %% [markdown]