Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def create_hook(output_s3_uri):
# With the following SaveConfig, we will save tensors for steps 1, 2 and 3
# (indexing starts with 0).
save_config = SaveConfig(save_steps=[1, 2, 3])
# Create a hook that logs weights, biases and gradients while training the model.
hook = Hook(
out_dir=output_s3_uri,
save_config=save_config,
include_collections=["weights", "gradients", "biases"],
)
return hook
def helper_mxnet_tests(collection, register_loss, save_config):
coll_name, coll_regex = collection
run_id = "trial_" + coll_name + "-" + datetime.now().strftime("%Y%m%d-%H%M%S%f")
trial_dir = os.path.join(SMDEBUG_MX_HOOK_TESTS_DIR, run_id)
hook = MX_Hook(
out_dir=trial_dir,
include_collections=[coll_name],
save_config=save_config,
export_tensorboard=True,
)
simple_mx_model(hook, register_loss=register_loss)
hook.close()
saved_scalars = ["scalar/mx_num_steps", "scalar/mx_before_train", "scalar/mx_after_train"]
verify_files(trial_dir, save_config, saved_scalars)
def create_hook():
# With the following SaveConfig, we will save tensors for every 100 steps
save_config = SaveConfig(save_interval=100)
# Create a hook that logs weights, biases and gradients while training the model.
hook = Hook(save_config=save_config, save_all=True)
return hook
def create_hook(output_uri, save_frequency):
# With the following SaveConfig, we will save tensors with the save_interval 100.
save_config = SaveConfig(save_interval=save_frequency)
# Create a hook that logs weights, biases and gradients while training the model.
hook = Hook(
out_dir=output_uri,
save_config=save_config,
include_collections=["weights", "gradients", "biases"],
)
return hook
def create_hook(output_uri):
# With the following SaveConfig, we will save tensors for steps 1, 2 and 3
# (indexing starts with 0).
save_config = SaveConfig(save_interval=1)
# Create a hook that logs weights, biases and gradients while training the model.
hook = Hook(
out_dir=output_uri,
save_config=save_config,
include_collections=["weights", "gradients", "biases"],
)
return hook
def create_hook():
# With the following SaveConfig, we will save tensors for steps 1, 2 and 3
# (indexing starts with 0).
save_config = SaveConfig(save_interval=1)
# Create a hook that logs weights, biases and gradients while training the model.
ts_hook = Hook(
out_dir=args.output_uri,
save_config=save_config,
include_collections=["weights", "gradients", "biases"],
)
return ts_hook
def create_hook(output_s3_uri):
# With the following SaveConfig, we will save tensors for steps 0, 1, 2 and 3
# (indexing starts with 0).
save_config = SaveConfig(save_steps=[0, 1, 2, 3])
# Create a hook that logs weights, biases and gradients while training the model.
hook = Hook(
out_dir=output_s3_uri,
save_config=save_config,
include_collections=["ReluActivation", "weights", "biases", "gradients"],
)
hook.get_collection("ReluActivation").include(["relu*", "input_*"])
return hook
def create_hook(output_s3_uri, block):
# Create a SaveConfig that determines tensors from which steps are to be stored.
# With the following SaveConfig, we will save tensors for steps 1, 2 and 3.
save_config = SaveConfig(save_steps=[1, 2, 3])
# Create a hook that logs weights, biases, gradients and inputs outputs of model while training.
hook = Hook(
out_dir=output_s3_uri,
save_config=save_config,
include_collections=["weights", "gradients", "biases", "TopBlock"],
)
# The names of input and output tensors of a block are in following format
# Inputs : _input_, and
# Output : _output
# In order to log the inputs and output of a model, we will create a collection as follows:
hook.get_collection("TopBlock").add_block_tensors(block, inputs=True, outputs=True)
return hook