Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
Y: array of shape = [n_samps, interval_size]
Returns
----------
slope: array of shape = [n_samps]
"""
x = np.arange(Y.shape[1]) + 1
slope = (np.mean(x * Y, axis=1) - np.mean(x) * np.mean(Y, axis=1)) / ((x * x).mean() - x.mean() ** 2)
return slope
if __name__ == "__main__":
dataset = "Gunpoint"
train_x, train_y = ld.load_from_tsfile_to_dataframe(file_path="C:/temp/sktime_temp_data/" + dataset + "/", file_name=dataset + "_TRAIN.ts")
print(train_x.iloc[0:10])
tsf = TimeSeriesForest()
tsf.fit(train_x.iloc[0:10], train_y[0:10])
preds = tsf.predict(train_x.iloc[10:20])
print(preds)
def _load_dataset(name, split, return_X_y):
"""
Helper function to load datasets.
"""
if split in ["TRAIN", "TEST"]:
fname = name + '_' + split + '.ts'
abspath = os.path.join(MODULE, DIRNAME, name, fname)
X, y = load_from_tsfile_to_dataframe(abspath)
elif split == "ALL":
X = pd.DataFrame()
y = pd.Series()
for split in ["TRAIN", "TEST"]:
fname = name + '_' + split + '.ts'
abspath = os.path.join(MODULE, DIRNAME, name, fname)
result = load_from_tsfile_to_dataframe(abspath)
X = pd.concat([X, pd.DataFrame(result[0])])
y = pd.concat([y, pd.Series(result[1])])
else:
raise ValueError("Invalid split value")
# Return appropriately
if return_X_y:
return X, y
else:
def _load_dataset(name, split, return_X_y):
"""
Helper function to load datasets.
"""
if split in ["TRAIN", "TEST"]:
fname = name + '_' + split + '.ts'
abspath = os.path.join(MODULE, DIRNAME, name, fname)
X, y = load_from_tsfile_to_dataframe(abspath)
elif split == "ALL":
X = pd.DataFrame()
y = pd.Series()
for split in ["TRAIN", "TEST"]:
fname = name + '_' + split + '.ts'
abspath = os.path.join(MODULE, DIRNAME, name, fname)
result = load_from_tsfile_to_dataframe(abspath)
X = pd.concat([X, pd.DataFrame(result[0])])
y = pd.concat([y, pd.Series(result[1])])
else:
raise ValueError("Invalid split value")
# Return appropriately
if return_X_y:
return X, y
else:
X['class_val'] = pd.Series(y)
return X
def _load_dataset(name, split, return_X_y):
"""
Helper function to load datasets.
"""
dname = 'data'
module_path = path.dirname(__file__)
if split in ["TRAIN", "TEST"]:
fname = name+'_'+split+'.ts'
abspath = path.join(module_path, dname, name, fname)
X, y = load_from_tsfile_to_dataframe(abspath)
elif split == "ALL":
X = pd.DataFrame()
y = pd.Series()
for split in ["TRAIN", "TEST"]:
fname = name+'_'+split+'.ts'
abspath = path.join(module_path, dname, name, fname)
result = load_from_tsfile_to_dataframe(abspath)
X = pd.concat([X, pd.DataFrame(result[0])])
y = pd.concat([y, pd.Series(result[1])])
else:
raise ValueError("Invalid split value")
# Return appropriately
if return_X_y:
return X, y
else:
"""
dname = 'data'
module_path = path.dirname(__file__)
if split in ["TRAIN", "TEST"]:
fname = name+'_'+split+'.ts'
abspath = path.join(module_path, dname, name, fname)
X, y = load_from_tsfile_to_dataframe(abspath)
elif split == "ALL":
X = pd.DataFrame()
y = pd.Series()
for split in ["TRAIN", "TEST"]:
fname = name+'_'+split+'.ts'
abspath = path.join(module_path, dname, name, fname)
result = load_from_tsfile_to_dataframe(abspath)
X = pd.concat([X, pd.DataFrame(result[0])])
y = pd.concat([y, pd.Series(result[1])])
else:
raise ValueError("Invalid split value")
# Return appropriately
if return_X_y:
return X, y
else:
X['class_val'] = pd.Series(y)
return X