How to use the skorch.utils.to_numpy function in skorch

To help you get started, we’ve selected a few skorch examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github skorch-dev / skorch / skorch / net.py View on Github external
* a dictionary of the former three
            * a list/tuple of the former three
            * a Dataset

          If this doesn't work with your data, you have to pass a
          ``Dataset`` that can deal with the data.

        Returns
        -------
        y_proba : numpy ndarray

        """
        y_probas = []
        for yp in self.forward_iter(X, training=False):
            yp = yp[0] if isinstance(yp, tuple) else yp
            y_probas.append(to_numpy(yp))
        y_proba = np.concatenate(y_probas, 0)
        return y_proba
github skorch-dev / skorch / skorch / callbacks.py View on Github external
def __init__(
            self,
            scoring,
            lower_is_better=True,
            on_train=False,
            name=None,
            target_extractor=to_numpy,
    ):
        self.scoring = scoring
        self.lower_is_better = lower_is_better
        self.on_train = on_train
        self.name = name
        self.target_extractor = target_extractor
github skorch-dev / skorch / skorch / dataset.py View on Github external
def check_cv(self, y):
        """Resolve which cross validation strategy is used."""
        y_arr = None
        if self.stratified:
            # Try to convert y to numpy for sklearn's check_cv; if conversion
            # doesn't work, still try.
            try:
                y_arr = to_numpy(y)
            except (AttributeError, TypeError):
                y_arr = y

        if self._is_float(self.cv):
            return self._check_cv_float()
        return self._check_cv_non_float(y_arr)
github skorch-dev / skorch / skorch / callbacks.py View on Github external
def __init__(
            self,
            scoring,
            lower_is_better=True,
            on_train=False,
            name=None,
            target_extractor=to_numpy,
    ):
        self.scoring = scoring
        self.lower_is_better = lower_is_better
        self.on_train = on_train
        self.name = name
        self.target_extractor = target_extractor
github skorch-dev / skorch / skorch / net.py View on Github external
* a dictionary of the former three
            * a list/tuple of the former three
            * a Dataset

          If this doesn't work with your data, you have to pass a
          ``Dataset`` that can deal with the data.

        Returns
        -------
        y_proba : numpy ndarray

        """
        y_probas = []
        for yp in self.forward_iter(X, training=False):
            yp = yp[0] if isinstance(yp, tuple) else yp
            y_probas.append(to_numpy(yp))
        y_proba = np.concatenate(y_probas, 0)
        return y_proba
github skorch-dev / skorch / skorch / classifier.py View on Github external
Returns
        -------
        y_proba : numpy ndarray

        """
        y_probas = []
        self.check_is_fitted(attributes=['criterion_'])
        bce_logits_loss = isinstance(
            self.criterion_, torch.nn.BCEWithLogitsLoss)

        for yp in self.forward_iter(X, training=False):
            yp = yp[0] if isinstance(yp, tuple) else yp
            if bce_logits_loss:
                yp = torch.sigmoid(yp)
            y_probas.append(to_numpy(yp))
        y_proba = np.concatenate(y_probas, 0)
        y_proba = np.stack((1 - y_proba, y_proba), axis=1)
        return y_proba
github skorch-dev / skorch / skorch / callbacks / scoring.py View on Github external
def __init__(
            self,
            scoring,
            lower_is_better=True,
            on_train=False,
            name=None,
            target_extractor=to_numpy,
            use_caching=True,
    ):
        self.scoring = scoring
        self.lower_is_better = lower_is_better
        self.on_train = on_train
        self.name = name
        self.target_extractor = target_extractor
        self.use_caching = use_caching
github skorch-dev / skorch / skorch / classifier.py View on Github external
* a dictionary of the former three
            * a list/tuple of the former three
            * a Dataset

          If this doesn't work with your data, you have to pass a
          ``Dataset`` that can deal with the data.

        Returns
        -------
        y_pred : numpy ndarray

        """
        y_preds = []
        for yp in self.forward_iter(X, training=False):
            yp = yp[0] if isinstance(yp, tuple) else yp
            y_preds.append(to_numpy(yp.max(-1)[-1]))
        y_pred = np.concatenate(y_preds, 0)
        return y_pred
github skorch-dev / skorch / examples / word_language_model / net.py View on Github external
def score(self, X, y=None):
        ds = self.get_dataset(X)
        target_iterator = self.get_iterator(ds, training=False)

        y_true = np.concatenate([skorch.utils.to_numpy(y) for _, y in target_iterator])
        y_pred = self.predict(X)

        return f1_score(y_true, y_pred, average='micro')