Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_wait():
parameters = [sherpa.Continuous('myparam', [0, 1])]
rs = sherpa.algorithms.RandomSearch()
gs = SequentialTesting(algorithm=rs,
K=10,
n=(3, 6, 9),
P=0.5)
study = sherpa.Study(algorithm=gs,
parameters=parameters,
lower_is_better=True,
disable_dashboard=True)
for _ in range(10*3 - 1):
trial = study.get_suggestion()
print(trial.id, trial.parameters, "{}/{}".format(gs.k, gs.K[gs.t]),
"{}/{}".format(gs.t, gs.T))
study.add_observation(trial,
iteration=1,
objective=trial.parameters['myparam'] + numpy.random.normal(
def test_branin():
def branin(x1, x2):
# Global minimum 0.397887 at (-pi, 12.275), (pi, 2.275),
# and (9.42478, 2.475)
a = 1
b = 5.1/(4*math.pi**2)
c = 5/math.pi
r = 6
s = 10
t = 1/(8*math.pi)
return a*(x2 - b*x1**2 + c*x1 - r)**2 + s*(1-t)*math.cos(x1)+s
parameters = [sherpa.Continuous('x1', [-5., 10.]),
sherpa.Continuous('x2', [0., 15.])]
bayesian_optimization = BayesianOptimization(num_grid_points=2, max_num_trials=50, fine_tune=True)
study = sherpa.Study(algorithm=bayesian_optimization,
parameters=parameters,
lower_is_better=True,
disable_dashboard=True)
for trial in study:
print("Trial {}:\t{}".format(trial.id, trial.parameters))
fval = branin(trial.parameters['x1'], trial.parameters['x2'])
print("Branin-Hoo: {}".format(fval))
study.add_observation(trial=trial,
iteration=1,
objective=fval)
def parameters():
parameters = [sherpa.Continuous('dropout', [0., 0.5]),
sherpa.Continuous('lr', [1e-7, 1e-1], 'log'),
sherpa.Choice('activation', ['relu', 'tanh', 'sigmoid']),
sherpa.Discrete('num_hidden', [100, 300])
]
return parameters
def test_grid_search_log_continuous():
parameters = [sherpa.Continuous('log-continuous', [1e-4,1e-2], 'log')]
alg = sherpa.algorithms.GridSearch(num_grid_points=3)
suggestion = alg.get_suggestion(parameters)
seen = set()
while suggestion != sherpa.AlgorithmState.DONE:
seen.add(suggestion['log-continuous'])
suggestion = alg.get_suggestion(parameters)
assert seen == {1e-4, 1e-3, 1e-2}
def test_overall_larger_is_better():
parameters = [sherpa.Continuous('myparam', [0, 10]),
sherpa.Discrete('myparam2', [0, 10])]
rs = sherpa.algorithms.RandomSearch()
gs = SequentialTesting(algorithm=rs,
K=10,
n=(3, 6, 9),
P=0.5)
study = sherpa.Study(algorithm=gs,
parameters=parameters,
lower_is_better=False,
disable_dashboard=True)
for trial in study:
print(trial.id, trial.parameters, "{}/{}".format(gs.k, gs.K[gs.t]),
"{}/{}".format(gs.t, gs.T))
study.add_observation(trial,
def test_bayes_opt():
def f(x, sd=1):
y = (x - 3) ** 2 + 10.
if sd == 0:
return y
else:
return y + numpy.random.normal(loc=0., scale=sd,
size=numpy.array(x).shape)
parameters = [sherpa.Continuous('x', [1, 6])]
alg = GPyOpt(max_num_trials=10)
gs = SequentialTesting(algorithm=alg,
K=10,
n=(3, 6, 9),
P=0.5)
study = sherpa.Study(algorithm=gs,
parameters=parameters,
lower_is_better=True,
disable_dashboard=True)
for trial in study:
study.add_observation(trial,
iteration=1,
objective=f(trial.parameters['x']))
study.finalize(trial)
print(study.get_best_result())
([sherpa.Continuous('a', [0, 1]), sherpa.Continuous('b', [10., 100])])])
def test_transformation_to_gpyopt_domain_continuous(parameters):
domain = GPyOpt._initialize_domain(parameters)
for p, d in zip(parameters, domain):
assert d['name'] == p.name
assert d['type'] == 'continuous'
assert d['domain'] == tuple(p.range)
def test_transformers():
parameter = sherpa.Choice('choice', ['a', 'b', 'c', 'd'])
transformer = BayesianOptimization.ChoiceTransformer(parameter)
assert np.all(transformer.transform(['d', 'c', 'b', 'a'])
== np.flip(np.eye(4), axis=0))
assert all(transformer.reverse(transformer.transform(['d', 'c', 'b', 'a']))
== np.array(['d', 'c', 'b', 'a']))
parameter = sherpa.Continuous('continuous', [0., 0.4])
transformer = BayesianOptimization.ContinuousTransformer(parameter)
assert np.all(transformer.transform([0.2, 0.4, 0.]) == np.array([0.5, 1.0, 0.0]))
assert np.all(transformer.reverse(transformer.transform([0.2, 0.4, 0.]))
== np.array([0.2, 0.4, 0.]))
parameter = sherpa.Continuous('continuous-log', [0.00001, 0.1], 'log')
transformer = BayesianOptimization.ContinuousTransformer(parameter)
print(transformer.transform([0.01]))
assert np.all(transformer.transform([0.0001, 0.001, 0.01]) == np.array(
[0.25, 0.5, 0.75]))
print(transformer.reverse(
transformer.transform([0.0001, 0.001, 0.01])))
assert np.all(transformer.reverse(
transformer.transform([0.0001, 0.001, 0.01])) == np.array(
[0.0001, 0.001, 0.01]))
parameter = sherpa.Discrete('discrete', [0, 12])
transformer = BayesianOptimization.DiscreteTransformer(parameter)
assert np.all(transformer.transform([3, 6, 9])
== np.array([0.25, 0.5, 0.75]))
assert np.all(
transformer.reverse(transformer.transform([3, 6, 9])) == np.array(
def test_chain_gs():
parameters = [sherpa.Continuous('myparam', [0, 1])]
alg = sherpa.algorithms.RandomSearch()
chain = sherpa.algorithms.Chain([SequentialTesting(algorithm=alg, K=5,
n=(3, 6, 9), P=0.5),
SequentialTesting(algorithm=alg, K=5,
n=(3, 6, 9), P=0.5),
SequentialTesting(algorithm=alg, K=5,
n=(3, 6, 9), P=0.5)])
study = sherpa.Study(algorithm=chain,
parameters=parameters,
lower_is_better=True,
disable_dashboard=True)
for trial in study:
study.add_observation(trial,
iteration=1,
def test_pbt():
parameters = [sherpa.Continuous(name='param_a', range=[0, 1])]
algorithm = sherpa.algorithms.PopulationBasedTraining(num_generations=3,
population_size=20,
parameter_range={'param_a': [0., 1.2]})
study = sherpa.Study(parameters=parameters,
algorithm=algorithm,
lower_is_better=True,
disable_dashboard=True)
for _ in range(20):
trial = study.get_suggestion()
print("Trial-ID={}".format(trial.id))
print(trial.parameters)
print()
study.add_observation(trial=trial, iteration=1, objective=trial.id)