Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def plot_feature_importances(estimator, X, cutoff=40):
if isinstance(estimator, sklearn.linear_model.Lasso) :
importances = estimator.coef_
else:
importances = estimator.feature_importances_
indices = np.argsort(importances)[::-1][:cutoff]
plt.figure()
g = sns.barplot(y=X.columns[indices][:cutoff],x = importances[indices][:cutoff] , orient='h')
g.set_xlabel("Relative importance",fontsize=12)
g.set_ylabel("Features",fontsize=12)
g.tick_params(labelsize=9)
g.set_title("Feature importances based on: " + str(estimator).split('(')[0] + ' model' )
def plot_into_axes(diet, ax0, ax1, legend_background_color=None):
df = generate_daily_intake_information(diet)
df['day'] = df.index
sns.barplot(x='day', y='calories', data=df, color='red', ax=ax0)
ax0.set_xlabel('')
ax0.set_ylabel('kcal')
ax0.axhline(3000, ls='--', color='red')
df_melted = df.copy()
df_melted.drop(['calories'], axis=1, inplace=True)
df_melted = df_melted.melt(id_vars=['day'], value_vars=['carbohydrates', 'proteins', 'fats'])
sns.barplot(x='day', y='value', hue='variable', data=df_melted, palette='deep', ax=ax1)
ax1.set_xlabel('')
legend = ax1.legend(ncol=3, bbox_to_anchor=(0.5, -0.3), loc='center')
legend_colors = [x._facecolor for x in legend.legendHandles]
if legend_background_color is not None:
legend.get_frame().set_color(legend_background_color)
ax1.axhline(400, ls='--', color=legend_colors[0])
ax1.axhline(150, ls='--', color=legend_colors[1])
ax1.axhline(80, ls='--', color=legend_colors[2])
if figure is None:
plt.figure(figsize=(15, 5))
gs = mgs.GridSpec(1, 21)
ax0 = plt.subplot(gs[0, :10])
ax1 = plt.subplot(gs[0, 11:])
mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
sns.heatmap(corr, linewidths=0.5, cmap="coolwarm", center=0, square=True, ax=ax0)
ax0.tick_params(axis="both", which="both", width=0)
for tick in ax0.xaxis.get_major_ticks():
tick.label.set_fontsize("small")
for tick in ax0.yaxis.get_major_ticks():
tick.label.set_fontsize("small")
sns.barplot(
data=gscorr,
x="index",
y=reference,
ax=ax1,
order=gs_descending,
palette="Reds_d",
saturation=0.5,
)
ax1.set_xlabel("Confound time series")
ax1.set_ylabel("Magnitude of correlation with {}".format(reference))
ax1.tick_params(axis="x", which="both", width=0)
ax1.tick_params(axis="y", which="both", width=5, length=5)
for tick in ax1.xaxis.get_major_ticks():
tick.label.set_fontsize("small")
for ind, selection_count in counter.items():
label = f'{ind.name} - {ind.fitness}'
data = {
'Molecule: name - fitness value': label,
'Number of times selected': selection_count,
'Fitness': ind.fitness
}
df = df.append(data, ignore_index=True)
df = df.sort_values(['Number of times selected', 'Fitness'],
ascending=[False, False])
norm = plt.Normalize(df['Fitness'].min(), df['Fitness'].max())
sm = plt.cm.ScalarMappable(cmap='magma_r', norm=norm)
sm.set_array([])
ax = sns.barplot(
x='Molecule: name - fitness value',
y='Number of times selected',
hue='Fitness',
palette='magma_r',
dodge=False,
data=df)
ax.get_legend().remove()
ax.figure.colorbar(sm).set_label('Fitness')
plt.xticks(rotation=90)
plt.tight_layout()
fig.savefig(plot_name, dpi=fig.dpi)
plt.close('all')
def save_evaluation_plot(x, y, metric, filename):
plt.figure()
sns.set()
ax = sns.barplot(y=x, x=y)
for n, (label, _y) in enumerate(zip(x, y)):
ax.annotate(
s='{:.3f}'.format(abs(_y)),
xy=(_y, n),
ha='right',
va='center',
xytext=(-5, 0),
textcoords='offset points',
color='white')
plt.title('Performance on qm9')
plt.xlabel(metric)
plt.savefig(filename)
DataSet['Age'].describe()
bins = [0, 12, 18, 65, 100]
DataSet['Age_group'] = pd.cut(DataSet['Age'], bins)
by_age = DataSet.groupby('Age_group')['Survived'].mean()
by_age.plot(kind = 'bar')
# name/Survived
DataSet['Title'] = DataSet['Name'].str.extract(' ([A-Za-z]+)\.', expand=False)
pd.crosstab(DataSet['Title'], DataSet['Sex'])
DataSet[['Title','Survived']].groupby(['Title']).mean().plot.bar()
# namelength/Survived
fig, axis1 = plt.subplots(1,1,figsize=(18,4))
DataSet['Name_length'] = DataSet['Name'].apply(len)
name_length = DataSet[['Name_length','Survived']].groupby(['Name_length'],as_index=False).mean()
sns.barplot(x='Name_length', y='Survived', data=name_length)
# SibSp/Survived
sibsp_df = DataSet[DataSet['SibSp'] != 0]
no_sibsp_df = DataSet[DataSet['SibSp'] == 0]
sibsp_df['Survived'].value_counts().plot.pie(labels=['No Survived', 'Survived'], autopct = '%1.1f%%')
plt.xlabel('sibsp')
plt.subplot(122)
no_sibsp_df['Survived'].value_counts().plot.pie(labels=['No Survived', 'Survived'], autopct = '%1.1f%%')
plt.xlabel('no_sibsp')
plt.show()
# Parch/Survived
parch_df = DataSet[DataSet['Parch'] != 0]
no_parch_df = DataSet[DataSet['Parch'] == 0]
def save_bar_graph(x, y, file_name):
plt.clf()
sns.set_style("whitegrid")
ax = sns.barplot(x=x, y=y)
for item in ax.get_xticklabels():
item.set_rotation(15)
plt.savefig(file_name)
plt.bar(X + 0.00, data[0], color = 'b', width = 0.25)
plt.bar(X + 0.25, data[1], color = 'g', width = 0.25)
plt.bar(X + 0.50, data[2], color = 'r', width = 0.25)
plt.savefig('%s/dist-1.pdf' % os.getcwd(), bbox_inches='tight')
df = pandas.DataFrame({
'Factor': x,
'Min': y,
'Avg': z,
'Max': k})
fig, ax1 = plt.subplots(figsize=(10, 10))
tidy = df.melt(id_vars='Factor').rename(columns=str.title)
sns.barplot(x='Factor', y='Value', hue='Variable', data=tidy, ax=ax1)
df : pandas.DataFrame
The DataFrame to be plotted.
"""
# Small fix for programa and programar.
df.loc[df["lemma_lower"] == "programa", "lemma_lower"] = "programar"
# Only take into account alphabet tokens that are longer than 1 character and are not stop words.
words = df[
(df["is_alphabet"] == True) &
(df["is_stopword"] == False) &
(df["lemma_lower"].str.len() > 1)
]["lemma_lower"].value_counts()[:20]
sns.barplot(x=words.values, y=words.index, palette="Blues_d", linewidth=0)
plt.xlabel("Occurrences Count")
plt.title("Most Frequent Words")
plt.savefig("words_counts.png", facecolor="#5C0E10")
class_weights = np.zeros(30)
for i in y:
class_weights[i] += 1
for i in range(len(class_weights)):
if class_weights[i] != 0.0:
if penalizing_method == 'balanced':
print(str(i) + " " + str(class_weights[i]) + " " + str(len(y) / (class_weights[i])))
class_weights[i] = len(y) / (30 * class_weights[i])
elif penalizing_method == 'weighted_log':
print(str(i) + " " + str(class_weights[i]) + " " + str(math.log(mu * len(y) / (class_weights[i]))))
class_weights[i] = math.log(mu * len(y) / (class_weights[i]))
else:
print(str(i) + " " + str(class_weights[i]) + " inf ")
class_weights[i] = 0.0
g = sns.barplot(x=[str(i) for i in range(len(class_weights))], y=class_weights)
plt.xticks(rotation=-90)
plt.title("Class weights " + penalizing_method)
plt.grid(True)
plt.show()
class_dictionary = {}
print(len(class_weights))
for i in range(len(class_weights)):
class_dictionary[i] = class_weights[i]
print(class_dictionary)
it = iter(class_weights)
seclist = [utils.POSE_CLASSES, utils.OBJ_HUMAN_CLASSES, utils.HUMAN_HUMAN_CLASSES]
class_lists = [list(islice(it, 0, i)) for i in seclist]
print(class_lists)