How to use the saspy.sasdecorator.procDecorator function in saspy

To help you get started, we’ve selected a few saspy examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github sassoftware / saspy / saspy / sasutil.py View on Github external
    @procDecorator.proc_decorator({})
    def hpbin(self, data: ['SASdata', str] = None,
              code: str = None,
              freq: str = None,
              id: [str, list] = None,
              input: [str, list, dict] = None,
              performance: str = None,
              target: [str, list, dict] = None,
              procopts: str = None,
              stmtpassthrough: str = None,
              **kwargs: dict) -> SASresults:
        """
        Python method to call the HPBIN procedure.
github sassoftware / saspy / saspy / sasViyaML.py View on Github external
    @procDecorator.proc_decorator({'input', 'target'})
    def factmac(self, data: ['SASdata', str] = None,
                autotune: str = None,
                code: str = None,
                display: str = None,
                displayout: str = None,
                id: str = None,
                input: [str, list, dict] = None,
                output: [str, bool, 'SASdata'] = None,
                savestate: str = None,
                target: [str, list, dict] = None,
                procopts: str = None,
                stmtpassthrough: str = None,
                **kwargs: dict) -> SASresults:
        """
        Python method to call the FACTMAC procedure
github sassoftware / saspy / saspy / sasets.py View on Github external
    @procDecorator.proc_decorator({'id'})
    def timeseries(self, data: ['SASdata', str] = None,
                   by: str = None,
                   corr: str = None,
                   crosscorr: str = None,
                   crossvar: str = None,
                   decomp: str = None,
                   id: str = None,
                   out: [str, 'SASdata'] = None,
                   season: str = None,
                   trend: str = None,
                   var: str = None,
                   procopts: str = None,
                   stmtpassthrough: str = None,
                   **kwargs: dict) -> SASresults:
        """
        Python method to call the TIMESERIES procedure
github sassoftware / saspy / saspy / sasml.py View on Github external
    @procDecorator.proc_decorator({})
    def hp4score(self, data: ['SASdata', str] = None,
                 id: str = None,
                 importance: str = None,
                 performance: str = None,
                 score: [str, bool, 'SASdata'] = True,
                 procopts: str = None,
                 stmtpassthrough: str = None,
                 **kwargs: dict) -> SASresults:
        """
        Python method to call the HP4SCORE procedure
github sassoftware / saspy / saspy / sasutil.py View on Github external
    @procDecorator.proc_decorator({})
    def hpimpute(self, data: ['SASdata', str] = None,
                 code: str = None,
                 freq: str = None,
                 id: str = None,
                 impute: str = None,
                 input: [str, list, dict] = None,
                 performance: str = None,
                 procopts: str = None,
                 stmtpassthrough: str = None,
                 **kwargs: dict) -> SASresults:
        """
        Python method to call the HPIMPUTE procedure
github sassoftware / saspy / saspy / sasqc.py View on Github external
    @procDecorator.proc_decorator({})
    def macontrol(self, data: ['SASdata', str] = None,
                  ewmachart: str = None,
                  machart: str = None,
                  procopts: str = None,
                  stmtpassthrough: str = None,
                  **kwargs: dict) -> SASresults:
        """
        Python method to call the MACONTROL procedure
github sassoftware / saspy / saspy / sasViyaML.py View on Github external
    @procDecorator.proc_decorator({'input', 'kernel'})
    def svdd(self, data: ['SASdata', str] = None,
             code: str = None,
             id: str = None,
             input: [str, list, dict] = None,
             kernel: str = None,
             savestate: str = None,
             solver: str = None,
             weight: str = None,
             procopts: str = None,
             stmtpassthrough: str = None,
             **kwargs: dict) -> SASresults:
        """
        Python method to call the SVDD procedure
github sassoftware / saspy / saspy / sasml.py View on Github external
    @procDecorator.proc_decorator({'input', 'target'})
    def hpforest(self, data: ['SASdata', str] = None,
                 freq: str = None,
                 id: str = None,
                 input: [str, list, dict] = None,
                 save: str = None,
                 score: [str, bool, 'SASdata'] = True,
                 target: [str, list, dict] = None,
                 procopts: str = None,
                 stmtpassthrough: str = None,
                 **kwargs: dict) -> SASresults:
        """
        Python method to call the HPFOREST procedure
github sassoftware / saspy / saspy / sasets.py View on Github external
    @procDecorator.proc_decorator({})
    def timeid(self, data: ['SASdata', str] = None,
               by: str = None,
               id: str = None,
               out: [str, 'SASdata'] = None,
               procopts: str = None,
               stmtpassthrough: str = None,
               **kwargs: dict) -> SASresults:
        """
        Python method to call the TIMEID procedure
github sassoftware / saspy / saspy / sasstat.py View on Github external
    @procDecorator.proc_decorator({'model'})
    def logistic(self, data: ['SASdata', str] = None,
                 by: str = None,
                 cls: [str, list] = None,
                 contrast: str = None,
                 effect: str = None,
                 effectplot: str = None,
                 estimate: str = None,
                 exact: str = None,
                 freq: str = None,
                 lsmeans: str = None,
                 oddsratio: str = None,
                 out: [str, bool, 'SASdata'] = None,
                 roc: str = None,
                 score: [str, bool, 'SASdata'] = True,
                 slice: str = None,
                 store: str = None,