How to use the saliency.xrai.XRAIParameters function in saliency

To help you get started, we’ve selected a few saliency examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github PAIR-code / saliency / saliency / xrai.py View on Github external
additional parameters for the XRAI saliency
                          method. If it is None, an XRAIParameters object
                          will be created with default parameters. See
                          XRAIParameters for more details.

    Raises:
        ValueError: If algorithm type is unknown (not full or fast).
                    If the shape of `base_attribution` dosn't match the shape of `x_value`.

    Returns:
        XRAIOutput: an object that contains the output of the XRAI algorithm.

    TODO(tolgab) Add output_selector functionality from XRAI API doc
    """
    if extra_parameters is None:
      extra_parameters = XRAIParameters()

    # Check the shape of base_attribution.
    if base_attribution is not None:
      if not isinstance(base_attribution, np.ndarray):
        base_attribution = np.array(base_attribution)
      if base_attribution.shape != x_value.shape:
        raise ValueError(
          'The base attribution shape should be the same as the shape of '
          '`x_value`. Expected {}, got {}'.format(
            x_value.shape, base_attribution.shape))

    # Calculate IG attribution if not provided by the caller.
    if base_attribution is None:
      _logger.info("Computing IG...")
      x_baselines = self._make_baselines(x_value, baselines)