Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
param_grid = ParameterGrid(
{'datasets': [['hcp'],
['archi'],
['brainomics'],
['la5c']],
'shared_supervised': shared_supervised_list,
'task_prob': task_prob_list,
'dropout_latent': dropout_latent_list,
'dropout_input': dropout_input_list,
'batch_size': batch_size_list,
'latent_dim': latent_dim_list,
# Hack to iterate over seed first'
'aseed': seed_list})
# Robust labelling of experiments
client = pymongo.MongoClient()
database = client['amensch']
c = database[collection].find({}, {'_id': 1})
c = c.sort('_id', pymongo.DESCENDING).limit(1)
c = c.next()['_id'] + 1 if c.count() else 1
Parallel(n_jobs=n_jobs,
verbose=10)(delayed(single_run)(config_updates, c + i, _run._id)
for i, config_updates in enumerate(param_grid))
task_prob_list,
n_seeds, n_jobs, _run, _seed):
seed_list = check_random_state(_seed).randint(np.iinfo(np.uint32).max,
size=n_seeds)
param_grid = ParameterGrid(
{'datasets': [['archi', 'hcp', 'brainomics', 'la5c']],
'shared_supervised': shared_supervised_list,
'task_prob': task_prob_list,
'dropout_latent': dropout_latent_list,
'dropout_input': dropout_input_list,
'latent_dim': latent_dim_list,
# Hack to iterate over seed first'
'aseed': seed_list})
# Robust labelling of experiments
client = pymongo.MongoClient()
database = client['amensch']
c = database[collection].find({}, {'_id': 1})
c = c.sort('_id', pymongo.DESCENDING).limit(1)
c = c.next()['_id'] + 1 if c.count() else 1
Parallel(n_jobs=n_jobs,
verbose=10)(delayed(single_run)(config_updates, c + i, _run._id)
for i, config_updates in enumerate(param_grid))
'human_voice': None}
transfer = [{'datasets': ['archi', 'hcp', 'brainomics', 'camcan'],
'geometric_reduction': True,
'latent_dim': 50,
'dropout_input': 0.25,
'dropout_latent': 0.5,
'train_size': train_size,
'optimizer': 'adam',
'seed': seed} for seed in seed_list]
# exps += multinomial
# exps += geometric_reduction
# exps += latent_dropout
exps += transfer
# Robust labelling of experiments
client = pymongo.MongoClient()
database = client['amensch']
c = database[collection].find({}, {'_id': 1})
c = c.sort('_id', pymongo.DESCENDING).limit(1)
c = c.next()['_id'] + 1 if c.count() else 1
exps = shuffle(exps)
Parallel(n_jobs=n_jobs,
verbose=10)(delayed(single_run)(config_updates, c + i, _run._id)
for i, config_updates in enumerate(exps))
n_seeds, n_jobs, _run, _seed):
seed_list = check_random_state(_seed).randint(np.iinfo(np.uint32).max,
size=n_seeds)
param_grid = ParameterGrid(
{'datasets': [['la5c', 'hcp']],
'dataset_weight': [dict(hcp=i, la5c=1 - i)
for i in [0, 0.25, 0.5, 0.75]],
'shared_supervised': shared_supervised_list,
'task_prob': task_prob_list,
'dropout_latent': dropout_latent_list,
'latent_dim': latent_dim_list,
# Hack to iterate over seed first'
'aseed': seed_list})
# Robust labelling of experiments
client = pymongo.MongoClient()
database = client['amensch']
c = database[collection].find({}, {'_id': 1})
c = c.sort('_id', pymongo.DESCENDING).limit(1)
c = c.next()['_id'] + 1 if c.count() else 1
Parallel(n_jobs=n_jobs,
verbose=10)(delayed(single_run)(config_updates, c + i, _run._id)
for i, config_updates in enumerate(param_grid))
shared_supervised_list,
task_prob_list,
n_seeds, n_jobs, _run, _seed):
seed_list = check_random_state(_seed).randint(np.iinfo(np.uint32).max,
size=n_seeds)
param_grid = ParameterGrid(
{'datasets': [['archi', 'hcp', 'brainomics', 'la5c']],
'shared_supervised': shared_supervised_list,
'task_prob': task_prob_list,
'dropout_latent': dropout_latent_list,
'latent_dim': latent_dim_list,
# Hack to iterate over seed first'
'aseed': seed_list})
# Robust labelling of experiments
client = pymongo.MongoClient()
database = client['amensch']
c = database[collection].find({}, {'_id': 1})
c = c.sort('_id', pymongo.DESCENDING).limit(1)
c = c.next()['_id'] + 1 if c.count() else 1
Parallel(n_jobs=n_jobs,
verbose=10)(delayed(single_run)(config_updates, c + i, _run._id)
for i, config_updates in enumerate(param_grid))
size=n_seeds)
param_grid = ParameterGrid(
{'datasets': [['brainomics', 'hcp']],
'dataset_weight': [dict(hcp=i, archi=1, brainomics=1)
for i in [0, 0.5, 1]],
'dropout_latent': dropout_latent_list,
'latent_dim': latent_dim_list,
'optimizer': optimizer_list,
'alpha': alpha_list,
'beta': beta_list,
'activation': activation_list,
'fine_tune': fine_tune_list,
'seed': seed_list})
# Robust labelling of experiments
client = pymongo.MongoClient()
database = client['amensch']
c = database[collection].find({}, {'_id': 1})
c = c.sort('_id', pymongo.DESCENDING).limit(1)
c = c.next()['_id'] + 1 if c.count() else 1
Parallel(n_jobs=n_jobs,
verbose=10)(delayed(single_run)(config_updates, c + i, _run._id)
for i, config_updates in enumerate(param_grid))