Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test2_ruptures1D():
n_regimes = 5
n_samples = 500
# Piecewise constant signal
signal, chg_pts = pw_constant(n=n_samples, clusters=n_regimes,
min_size=50, noisy=True, snr=0.1)
func_to_minimize = gaussmean(signal) # - log likelihood
pen = 10
pe = Pelt(func_to_minimize, penalty=pen,
n=signal.shape[0], K=0, min_size=1)
pe.fit()
# Piecewise linear signal
signal, chg_pts = pw_linear(n=n_samples, clusters=n_regimes,
min_size=50, noisy=True, snr=0.1)
func_to_minimize = linear_mse(signal) # mean squared error
for pen in np.linspace(0.1, 100, 20):
pe = Pelt(func_to_minimize, penalty=pen, n=signal.shape[0], K=0)
pe.fit()
def test1_ruptures1D():
n_regimes = 5
n_samples = 500
# Piecewise constant signal
signal, chg_pts = pw_constant(n=n_samples, clusters=n_regimes,
min_size=50, noisy=True, snr=0.1)
func_to_minimize = gaussmean(signal) # - log likelihood
for pen in np.linspace(0.1, 100, 20):
pe = Pelt(func_to_minimize, penalty=pen, n=signal.shape[0], K=0)
pe.fit()
# Piecewise linear signal
signal, chg_pts = pw_linear(n=n_samples, clusters=n_regimes,
min_size=50, noisy=True, snr=0.1)
func_to_minimize = linear_mse(signal) # mean squared error
for pen in np.linspace(0.1, 100, 20):
pe = Pelt(func_to_minimize, penalty=pen,
n=signal.shape[0], K=0, min_size=3)
pe.fit()
def test3_ruptures1D():
n_regimes = 5
n_samples = 500
# Piecewise linear signal
signal, chg_pts = pw_linear(n=n_samples, clusters=n_regimes,
min_size=50, noisy=True, snr=0.1)
func_to_minimize = linear_mse(signal) # mean squared error
pen = 10
pe = Pelt(func_to_minimize, penalty=pen,
n=signal.shape[0], K=0, min_size=2)
pe.fit()
product([pw_linear],
range(20, 1000, 200),
range(1, 4),
[2, 5, 3],
[None, 1, 2]))
def test_linear(func, n_samples, n_features, n_bkps, noise_std):
signal, bkps = func(
n_samples=n_samples, n_features=n_features, n_bkps=n_bkps, noise_std=noise_std)
assert signal.shape == (n_samples, n_features + 1)
assert len(bkps) == n_bkps + 1
assert bkps[-1] == n_samples