Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
for _ in range(tasks):
trajectories, _ = self.env.run(is_training=train_flag)
self.output_queue.put(trajectories)
self.input_queue.task_done()
else:
self.input_queue.task_done()
break
self.sess.close()
return
if __name__ == '__main__':
# Avoid RuntimeError
multiprocessing.freeze_support()
# Set a global seed
set_global_seed(0)
# Initialize processes
PROCESS_NUM = 16
INPUT_QUEUE = JoinableQueue()
OUTPUT_QUEUE = Queue()
PROCESSES = [BlackjackProcess(index, INPUT_QUEUE, OUTPUT_QUEUE, np.random.randint(1000000))
for index in range(PROCESS_NUM)]
for p in PROCESSES:
p.start()
# Make environment
env = rlcard.make('blackjack')
eval_env = rlcard.make('blackjack')
with tf.Session() as sess:
env = rlcard.make('no-limit-holdem')
eval_env = rlcard.make('no-limit-holdem')
# Set the iterations numbers and how frequently we evaluate/save plot
evaluate_every = 1000
save_plot_every = 10000
evaluate_num = 10000
episode_num = 1000000
# Set the the number of steps for collecting normalization statistics
# and intial memory size
memory_init_size = 1000
norm_step = 100
# Set a global seed
set_global_seed(0)
with tf.Session() as sess:
# Set agents
global_step = tf.Variable(0, name='global_step', trainable=False)
agent = DQNAgent(sess,
scope='dqn',
action_num=env.action_num,
replay_memory_size=int(1e5),
replay_memory_init_size=memory_init_size,
norm_step=norm_step,
state_shape=[52],
mlp_layers=[512, 512])
random_agent = RandomAgent(action_num=eval_env.action_num)
sess.run(tf.global_variables_initializer())
evaluate_num = 10000
episode_num = 10000000
# Set the the number of steps for collecting normalization statistics
# and intial memory size
memory_init_size = 1000
norm_step = 1000
# The paths for saving the logs and learning curves
root_path = './experiments/uno_nfsp_result/'
log_path = root_path + 'log.txt'
csv_path = root_path + 'performance.csv'
figure_path = root_path + 'figures/'
# Set a global seed
set_global_seed(0)
with tf.Session() as sess:
# Set agents
global_step = tf.Variable(0, name='global_step', trainable=False)
agents = []
for i in range(env.player_num):
agent = NFSPAgent(sess,
scope='nfsp' + str(i),
action_num=env.action_num,
state_shape=env.state_shape,
hidden_layers_sizes=[512,1024,2048,1024,512],
anticipatory_param=0.5,
batch_size=256,
rl_learning_rate=0.00005,
sl_learning_rate=0.00001,
min_buffer_size_to_learn=memory_init_size,
evaluate_num = 5000
episode_num = 1000000
# Set the the number of steps for collecting normalization statistics
# and intial memory size
memory_init_size = 1000
norm_step = 1000
# The paths for saving the logs and learning curves
root_path = './experiments/mahjong_dqn_result/'
log_path = root_path + 'log.txt'
csv_path = root_path + 'performance.csv'
figure_path = root_path + 'figures/'
# Set a global seed
set_global_seed(0)
with tf.Session() as sess:
# Set agents
global_step = tf.Variable(0, name='global_step', trainable=False)
agent = DQNAgent(sess,
scope='dqn',
action_num=env.action_num,
replay_memory_size=20000,
replay_memory_init_size=memory_init_size,
norm_step=norm_step,
state_shape=env.state_shape,
mlp_layers=[512, 512])
random_agent = RandomAgent(action_num=eval_env.action_num)
sess.run(tf.global_variables_initializer())
evaluate_num = 10000
episode_num = 1000000
# Set the the number of steps for collecting normalization statistics
# and intial memory size
memory_init_size = 1000
norm_step = 1000
# The paths for saving the logs and learning curves
root_path = './experiments/uno_dqn_result/'
log_path = root_path + 'log.txt'
csv_path = root_path + 'performance.csv'
figure_path = root_path + 'figures/'
# Set a global seed
set_global_seed(0)
with tf.Session() as sess:
# Set agents
global_step = tf.Variable(0, name='global_step', trainable=False)
agent = DQNAgent(sess,
scope='dqn',
action_num=env.action_num,
replay_memory_size=20000,
replay_memory_init_size=memory_init_size,
norm_step=norm_step,
state_shape=env.state_shape,
mlp_layers=[512, 512])
random_agent = RandomAgent(action_num=eval_env.action_num)
sess.run(tf.global_variables_initializer())
env = rlcard.make('doudizhu')
eval_env = rlcard.make('doudizhu')
# Set the iterations numbers and how frequently we evaluate/save plot
evaluate_every = 200
save_plot_every = 5000
evaluate_num = 200
episode_num = 1000000
# Set the the number of steps for collecting normalization statistics
# and intial memory size
memory_init_size = 1000
norm_step = 100
# Set a global seed
set_global_seed(0)
with tf.Session() as sess:
# Set agents
agent = DQNAgent(sess,
action_num=env.action_num,
replay_memory_size=20000,
replay_memory_init_size=memory_init_size,
norm_step=norm_step,
state_shape=[6, 5, 15],
mlp_layers=[512, 512])
random_agent = RandomAgent(action_num=eval_env.action_num)
env.set_agents([agent, random_agent, random_agent])
eval_env.set_agents([agent, random_agent, random_agent])
evaluate_num = 5000
episode_num = 10000000
# Set the the number of steps for collecting normalization statistics
# and intial memory size
memory_init_size = 1000
norm_step = 1000
# The paths for saving the logs and learning curves
root_path = './experiments/mahjong_nfsp_result/'
log_path = root_path + 'log.txt'
csv_path = root_path + 'performance.csv'
figure_path = root_path + 'figures/'
# Set a global seed
set_global_seed(0)
with tf.Session() as sess:
# Set agents
global_step = tf.Variable(0, name='global_step', trainable=False)
agents = []
for i in range(env.player_num):
agent = NFSPAgent(sess,
scope='nfsp' + str(i),
action_num=env.action_num,
state_shape=env.state_shape,
hidden_layers_sizes=[512,1024,2048,1024,512],
anticipatory_param=0.5,
batch_size=256,
rl_learning_rate=0.00005,
sl_learning_rate=0.00001,
min_buffer_size_to_learn=memory_init_size,
multiprocessing.freeze_support()
# Set the number of process
process_num = 8
# Initialize process pool
pool = multiprocessing.Pool(process_num)
# Set game and make environment
env = rlcard.make('doudizhu')
# Set episode_num
episode_num = 10000
# Set global seed
set_global_seed(1)
# Set up agents
agent_num = env.game.num_players
env.set_agents([RandomAgent(action_num=env.action_num)
for _ in range(agent_num)])
# Run game
trajectories_set = []
for episode in range(episode_num):
# Generate data from the environment
result = pool.apply_async(env.run, args=(False, np.random.randint(10000000)))
trajectories_set.append(result)
for result in trajectories_set:
trajectories, player_wins = result.get()
# print(trajectories, player_wins)
''' A toy example of playing Uno with random agents
'''
import rlcard
from rlcard.agents.random_agent import RandomAgent
from rlcard.utils.utils import set_global_seed
# Make environment
env = rlcard.make('uno')
episode_num = 2
# Set a global seed
set_global_seed(0)
# Set up agents
agent_0 = RandomAgent(action_num=env.action_num)
agent_1 = RandomAgent(action_num=env.action_num)
agent_2 = RandomAgent(action_num=env.action_num)
agent_3 = RandomAgent(action_num=env.action_num)
env.set_agents([agent_0, agent_1, agent_2, agent_3])
for episode in range(episode_num):
# Generate data from the environment
trajectories, _ = env.run(is_training=False)
# Print out the trajectories
print('\nEpisode {}'.format(episode))
for ts in trajectories[0]:
''' A toy example of playing Blackjack with random agents
'''
import rlcard
from rlcard.agents.random_agent import RandomAgent
from rlcard.utils.utils import set_global_seed
# Make environment
env = rlcard.make('blackjack')
episode_num = 2
# Set a global seed
set_global_seed(1)
# Set up agents
agent_0 = RandomAgent(action_num=env.action_num)
env.set_agents([agent_0])
for episode in range(episode_num):
# Generate data from the environment
trajectories, _ = env.run(is_training=False)
# Print out the trajectories
print('\nEpisode {}'.format(episode))
for ts in trajectories[0]:
print('State: {}, Action: {}, Reward: {}, Next State: {}, Done: {}'.format(ts[0], ts[1], ts[2], ts[3], ts[4]))