Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def __init__(self, ncell, nbranch, ncompart, gidstart, types):
if settings.usegap:
self.sid_dend_start = settings.nring * ncell
self.halfgap_list = []
self.gids = []
self.delay = 1
self.ncell = int(ncell)
self.gidstart = gidstart
self.mkring(self.ncell, nbranch, ncompart, types)
self.mkstim()
Ring.counter += 1
# show number of cells created
import sys
sys.stdout.write("%d\r" % Ring.counter)
sys.stdout.flush()
# check_default_category, is very expensive.
# However, we don't just want to use the given category without mixing in
# some quotient stuff - unless Parent.__init__ was called
# previously, in which case the quotient ring stuff is just
# a vaste of time. This is the case for FiniteField_prime_modn.
if not self._is_category_initialized():
if category is None:
try:
commutative = R.is_commutative()
except (AttributeError, NotImplementedError):
commutative = False
if commutative:
category = check_default_category(_CommutativeRingsQuotients,category)
else:
category = check_default_category(_RingsQuotients,category)
ring.Ring.__init__(self, R.base_ring(), names=names, category=category)
# self._populate_coercion_lists_([R]) # we don't want to do this, since subclasses will often implement improved coercion maps.
sage: is_QuotientRing(S)
True
sage: is_QuotientRing(R)
False
"""
return isinstance(x, QuotientRing_nc)
from sage.categories.rings import Rings
_Rings = Rings()
_RingsQuotients = Rings().Quotients()
from sage.categories.commutative_rings import CommutativeRings
_CommutativeRingsQuotients = CommutativeRings().Quotients()
from sage.structure.category_object import check_default_category
class QuotientRing_nc(ring.Ring, sage.structure.parent_gens.ParentWithGens):
"""
The quotient ring of `R` by a twosided ideal `I`.
This base class is for rings that do not inherit from :class:`~sage.rings.ring.CommutativeRing`.
Real life examples will be available with trac ticket #7797.
For rings that *do* inherit from :class:`~sage.rings.ring.CommutativeRing`, we provide
a subclass :class:`QuotientRing_generic`, for backwards compatibility.
EXAMPLES::
sage: R. = PolynomialRing(ZZ,'x')
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I); S
Quotient of Univariate Polynomial Ring in x over Integer Ring by the ideal (x^2 + 3*x + 4, x^2 + 1)
def create_rings(self):
for i in xrange(5):
rname = ['ring', `i`, '.xcf']
self.rSprites.add(Ring((self.centerx, self.centery),
i, ''.join (rname)))