How to use the pyswarms.utils.reporter.Reporter function in pyswarms

To help you get started, weโ€™ve selected a few pyswarms examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github ljvmiranda921 / pyswarms / pyswarms / discrete / binary.py View on Github external
init_pos : numpy.ndarray, optional
            option to explicitly set the particles' initial positions. Set to
            :code:`None` if you wish to generate the particles randomly.
        velocity_clamp : tuple, optional
            a tuple of size 2 where the first entry is the minimum velocity
            and the second entry is the maximum velocity. It
            sets the limits for velocity clamping.
        vh_strategy : String
            a strategy for the handling of the velocity of out-of-bounds particles.
            Only the "unmodified" and the "adjust" strategies are allowed.
        ftol : float
            relative error in objective_func(best_pos) acceptable for
            convergence
        """
        # Initialize logger
        self.rep = Reporter(logger=logging.getLogger(__name__))
        # Assign k-neighbors and p-value as attributes
        self.k, self.p = options["k"], options["p"]
        # Initialize parent class
        super(BinaryPSO, self).__init__(
            n_particles=n_particles,
            dimensions=dimensions,
            binary=True,
            options=options,
            init_pos=init_pos,
            velocity_clamp=velocity_clamp,
            ftol=ftol,
        )
        # Initialize the resettable attributes
        self.reset()
        # Initialize the topology
        self.top = Ring(static=False)
github ljvmiranda921 / pyswarms / pyswarms / utils / plotters / plotters.py View on Github external
speed of animation.
"""

# Import standard library
import logging

# Import modules
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import animation, cm
from mpl_toolkits.mplot3d import Axes3D

from ..reporter import Reporter
from .formatters import Animator, Designer

rep = Reporter(logger=logging.getLogger(__name__))


def plot_cost_history(
    cost_history, ax=None, title="Cost History", designer=None, **kwargs
):
    """Create a simple line plot with the cost in the y-axis and
    the iteration at the x-axis

    Parameters
    ----------
    cost_history : array_like
        Cost history of shape :code:`(iters, )` or length :code:`iters` where
        each element contains the cost for the given iteration.
    ax : :obj:`matplotlib.axes.Axes`, optional
        The axes where the plot is to be drawn. If :code:`None` is
        passed, then the plot will be drawn to a new set of axes.
github ljvmiranda921 / pyswarms / pyswarms / single / general_optimizer.py View on Github external
option to explicitly set the particles' initial positions. Set to
            :code:`None` if you wish to generate the particles randomly.
        """
        super(GeneralOptimizerPSO, self).__init__(
            n_particles,
            dimensions=dimensions,
            options=options,
            bounds=bounds,
            velocity_clamp=velocity_clamp,
            center=center,
            ftol=ftol,
            init_pos=init_pos,
        )

        # Initialize logger
        self.rep = Reporter(logger=logging.getLogger(__name__))
        # Initialize the resettable attributes
        self.reset()
        # Initialize the topology and check for type
        if not isinstance(topology, Topology):
            raise TypeError("Parameter `topology` must be a Topology object")
        else:
            self.top = topology
        self.bh = BoundaryHandler(strategy=bh_strategy)
        self.vh = VelocityHandler(strategy=vh_strategy)
        self.name = __name__
github ljvmiranda921 / pyswarms / pyswarms / backend / topology / pyramid.py View on Github external
def __init__(self, static=False):
        """Initialize the class

        Parameters
        ----------
        static : bool (Default is :code:`False`)
            a boolean that decides whether the topology
            is static or dynamic
        """
        super(Pyramid, self).__init__(static)
        self.rep = Reporter(logger=logging.getLogger(__name__))
github ljvmiranda921 / pyswarms / pyswarms / backend / topology / random.py View on Github external
def __init__(self, static=False):
        """Initializes the class

        Parameters
        ----------
        static : bool
            a boolean that decides whether the topology
            is static or dynamic. Defaulg is `False`
        """
        super(Random, self).__init__(static)
        self.rep = Reporter(logger=logging.getLogger(__name__))
github ljvmiranda921 / pyswarms / pyswarms / backend / generators.py View on Github external
This module abstracts how a swarm is generated. You can see its
implementation in our base classes. In addition, you can use all the methods
here to dictate how a swarm is initialized for your custom PSO.

"""

# Import standard library
import logging

# Import modules
import numpy as np

from ..utils.reporter import Reporter
from .swarms import Swarm

rep = Reporter(logger=logging.getLogger(__name__))


def generate_swarm(
    n_particles, dimensions, bounds=None, center=1.00, init_pos=None
):
    """Generate a swarm

    Parameters
    ----------
    n_particles : int
        number of particles to be generated in the swarm.
    dimensions: int
        number of dimensions to be generated in the swarm
    bounds : tuple of numpy.ndarray or list, optional
        a tuple of size 2 where the first entry is the minimum bound while
        the second entry is the maximum bound. Each array must be of shape
github ljvmiranda921 / pyswarms / pyswarms / backend / topology / base.py View on Github external
def __init__(self, static, **kwargs):
        """Initializes the class"""

        # Initialize logger
        self.rep = Reporter(logger=logging.getLogger(__name__))

        # Initialize attributes
        self.static = static
        self.neighbor_idx = None

        if self.static:
            self.rep.log(
                "Running on `dynamic` topology,"
                "set `static=True` for fixed neighbors.",
                lvl=logging.DEBUG,
            )
github ljvmiranda921 / pyswarms / pyswarms / single / local_best.py View on Github external
self.logger = logging.getLogger(__name__)
        # Assign k-neighbors and p-value as attributes
        self.k, self.p = options["k"], options["p"]
        # Initialize parent class
        super(LocalBestPSO, self).__init__(
            n_particles=n_particles,
            dimensions=dimensions,
            options=options,
            bounds=bounds,
            velocity_clamp=velocity_clamp,
            center=center,
            ftol=ftol,
            init_pos=init_pos,
        )
        # Initialize logger
        self.rep = Reporter(logger=logging.getLogger(__name__))
        # Initialize the resettable attributes
        self.reset()
        # Initialize the topology
        self.top = Ring(static=static)
        self.bh = BoundaryHandler(strategy=bh_strategy)
        self.vh = VelocityHandler(strategy=vh_strategy)
        self.name = __name__
github ljvmiranda921 / pyswarms / pyswarms / backend / topology / ring.py View on Github external
def __init__(self, static=False):
        """Initializes the class

        Parameters
        ----------
        static : bool (Default is :code:`False`)
            a boolean that decides whether the topology
            is static or dynamic
        """
        super(Ring, self).__init__(static)
        self.rep = Reporter(logger=logging.getLogger(__name__))
github ljvmiranda921 / pyswarms / pyswarms / single / global_best.py View on Github external
option to explicitly set the particles' initial positions. Set to
            :code:`None` if you wish to generate the particles randomly.
        """
        super(GlobalBestPSO, self).__init__(
            n_particles=n_particles,
            dimensions=dimensions,
            options=options,
            bounds=bounds,
            velocity_clamp=velocity_clamp,
            center=center,
            ftol=ftol,
            init_pos=init_pos,
        )

        # Initialize logger
        self.rep = Reporter(logger=logging.getLogger(__name__))
        # Initialize the resettable attributes
        self.reset()
        # Initialize the topology
        self.top = Star()
        self.bh = BoundaryHandler(strategy=bh_strategy)
        self.vh = VelocityHandler(strategy=vh_strategy)
        self.name = __name__