Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def unpatch_image():
"""Unpatching the pyresample.image module.
"""
image.ImageContainer = image.OldImageContainer
delattr(image, "OldImageContainer")
def unpatch_image():
"""Unpatching the pyresample.image module.
"""
image.ImageContainer = image.OldImageContainer
delattr(image, "OldImageContainer")
def unpatch_image():
"""Unpatching the pyresample.image module.
"""
image.ImageContainer = image.OldImageContainer
delattr(image, "OldImageContainer")
def test_image(self):
data = numpy.fromfunction(lambda y, x: y*x*10**-6, (3712, 3712))
msg_con = image.ImageContainerQuick(data, self.msg_area, segments=1)
area_con = msg_con.resample(self.area_def)
res = area_con.image_data
cross_sum = res.sum()
expected = 399936.39392500359
self.assertAlmostEqual(cross_sum, expected, msg='ImageContainer resampling quick failed')
def unpatch_image():
"""Unpatching the pyresample.image module.
"""
image.ImageContainer = image.OldImageContainer
delattr(image, "OldImageContainer")
def test_nearest_resize(self):
data = numpy.fromfunction(lambda y, x: y*x*10**-6, (3712, 3712))
msg_con = image.ImageContainerNearest(data, self.msg_area, 50000, segments=1)
area_con = msg_con.resample(self.msg_area_resize)
res = area_con.image_data
cross_sum = res.sum()
expected = 2212023.0175830
self.assertAlmostEqual(cross_sum, expected,
msg='ImageContainer resampling nearest neighbour failed')
self.data = self.cut_borders(np.array(img))
self.logger.debug("image size cut: %s" % (self.data.shape,))
x_size = self.data.shape[1]
y_size = self.data.shape[0]
proj_dict = {'a': '6378137.0', 'b': '6356752.3',
'lon_0': self.longitude,
'h': '35785831.0', 'proj': 'geos'}
self.extent = 5568742.4 * 0.964
area_extent = (-self.extent, -self.extent,
self.extent, self.extent)
area = geometry.AreaDefinition('geo', 'geostat', 'geo',
proj_dict, x_size,
y_size, area_extent)
dataIC = image.ImageContainerQuick(self.data, area)
dataResampled = dataIC.resample(pc(self.outwidth,
self.outheight))
dataResampledImage = self.rescale(dataResampled.image_data)
dataResampledImage = self.polar_clouds(dataResampledImage)
weight = self.get_weight()
self.logger.debug("image max: %d" % np.max(dataResampledImage))
result = np.array([dataResampledImage, weight])
return result
self._cache['index_array'])
res = kd_tree.get_sample_from_neighbour_info('nn',
self.out_area.shape,
data,
valid_index,
valid_output_index,
index_array,
fill_value=None)
elif self.mode == "quick":
if not 'row_idx' in self._cache:
self._cache['row_idx'] = self._file_cache['row_idx']
self._cache['col_idx'] = self._file_cache['col_idx']
row_idx, col_idx = self._cache['row_idx'], self._cache['col_idx']
img = image.ImageContainer(data, self.in_area, fill_value=None)
res = np.ma.array(img.get_array_from_linesample(row_idx, col_idx),
dtype=data.dtype)
elif self.mode == "ewa":
from pyresample.ewa import fornav
# TODO: should be user configurable?
rows_per_scan = None
if 'ewa_cols' not in self._cache:
self._cache['ewa_cols'] = self._file_cache['ewa_cols']
self._cache['ewa_rows'] = self._file_cache['ewa_rows']
num_valid_points, res = fornav(self._cache['ewa_cols'],
self._cache['ewa_rows'],
self.out_area, data,
rows_per_scan=rows_per_scan)
self.data = np.array(im4)
self.x_size = self.data.shape[1]
self.y_size = self.data.shape[0]
proj_dict = {'lon_0': self.longitude,
'lat_0': self.latitude,
'proj': 'stere',
'ellps': 'WGS84',
'units': 'm'}
area = geometry.AreaDefinition('stere', 'stere', 'stere',
proj_dict,
self.x_size,
self.y_size,
self.extent)
dataIC = image.ImageContainerQuick(self.data, area)
dataResampled = dataIC.resample(pc(self.outwidth,
self.outheight))
dataResampledImage = self.rescale(dataResampled.image_data)
# dataResampledImage = np.ones(shape=dataResampledImage.shape) * 1e-7
weightResampledImage = self.get_weight()
# weightIC = image.ImageContainerQuick(weight, area)
# weightResampled = weightIC.resample(pc(self.outwidth,
# self.outheight))
# weightResampledImage = weightResampled.image_data
# dataResampledImage = self.polar_clouds(dataResampledImage)
self.logger.info("image max: %r" % np.max(dataResampledImage))
result = np.array([dataResampledImage, weightResampledImage])
return result