How to use the pyrealsense2.stream.color function in pyrealsense2

To help you get started, weā€™ve selected a few pyrealsense2 examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github olinrobotics / hiro / hiro_archive / Fall_2018 / chess / OpenCvRealSenseCameras.py View on Github external
def test():
    # Configure depth and color streams...
    # ...from Camera 1
    pipeline_1 = rs.pipeline()
    config_1 = rs.config()
    config_1.enable_device('802212060621')
    config_1.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)

    # Start streaming from both cameras
    pipeline_1.start(config_1)
    img_counter = 0
    try:
        while True:

            # Camera 1
            # Wait for a coherent pair of frames: depth and color
            frames_1 = pipeline_1.wait_for_frames()
            color_frame_1 = frames_1.get_color_frame()

            #depth_frame_1 or
            if not color_frame_1:
                continue
            # Convert images to numpy arrays
github AoLyu / 3D-Object-Reconstruction-with-RealSense-D435 / Python / readBag.py View on Github external
# Add argument which takes path to a bag file as an input
    parser.add_argument("-i", "--input", type=str, help="Path to the bag file")
    # Parse the command line arguments to an object
    args = parser.parse_args()
    # Safety if no parameter have been given
    if not args.input:
        print("No input paramater have been given.")
        print("For help type --help")
        exit()
    # Check if the given file have bag extension
    if os.path.splitext(args.input)[1] != ".bag":
        print("The given file is not of correct file format.")
        print("Only .bag files are accepted")
        exit()

        align = rs.align(rs.stream.color)
        pipeline = rs.pipeline()
        config = rs.config()
        # Tell config that we will use a recorded device from filem to be used by the pipeline through playback.
        rs.config.enable_device_from_file(config, args.input)
        # Configure the pipeline to stream the depth stream
        config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
        config.enable_stream(rs.stream.color, 640, 480, rs.format.rgb8, 30)

        # Start streaming from file
        profile = pipeline.start(config)

        intr = profile.get_stream(rs.stream.color).as_video_stream_profile().get_intrinsics()
        # print( 'camera_intrinsic', intr.width, intr.height, intr.fx, intr.fy, intr.ppx, intr.ppy)

        # Create opencv window to render image in
        cv2.namedWindow("Depth Stream", cv2.WINDOW_AUTOSIZE)
github F2Wang / ObjectDatasetTools / record2.py View on Github external
if __name__ == "__main__":
    try:
        folder = sys.argv[1]+"/"
    except:
        print_usage()
        exit()

    FileName=0
    make_directories(folder)
    
    pipeline = rs.pipeline()
    config = rs.config()
    config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
    config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
    
    # Start pipeline
    profile = pipeline.start(config)
    frames = pipeline.wait_for_frames()
    color_frame = frames.get_color_frame()

    # Color Intrinsics 
    intr = color_frame.profile.as_video_stream_profile().intrinsics
    camera_parameters = {'fx': intr.fx, 'fy': intr.fy,
                         'ppx': intr.ppx, 'ppy': intr.ppy,
                         'height': intr.height, 'width': intr.width,
                         'depth_scale':profile.get_device().first_depth_sensor().get_depth_scale()
    }

    
    with open(folder+'intrinsics.json', 'w') as fp:
github pupil-labs / pupil / pupil_src / shared_modules / video_capture / realsense2_backend.py View on Github external
def _get_default_config(self):
        config = rs.config()  # default config is RGB8, we want YUYV
        config.enable_stream(
            rs.stream.color,
            DEFAULT_COLOR_SIZE[0],
            DEFAULT_COLOR_SIZE[1],
            rs.format.yuyv,
            DEFAULT_COLOR_FPS,
        )
        config.enable_stream(
            rs.stream.depth,
            DEFAULT_DEPTH_SIZE[0],
            DEFAULT_DEPTH_SIZE[1],
            rs.format.z16,
            DEFAULT_DEPTH_FPS,
        )
        return config
github intel-isl / Open3D / examples / Python / ReconstructionSystem / sensors / realsense_pcd_visualizer.py View on Github external
# Using preset HighAccuracy for recording
    depth_sensor.set_option(rs.option.visual_preset, Preset.HighAccuracy)

    # Getting the depth sensor's depth scale (see rs-align example for explanation)
    depth_scale = depth_sensor.get_depth_scale()

    # We will not display the background of objects more than
    #  clipping_distance_in_meters meters away
    clipping_distance_in_meters = 3  # 3 meter
    clipping_distance = clipping_distance_in_meters / depth_scale
    # print(depth_scale)

    # Create an align object
    # rs.align allows us to perform alignment of depth frames to others frames
    # The "align_to" is the stream type to which we plan to align depth frames.
    align_to = rs.stream.color
    align = rs.align(align_to)

    vis = o3d.visualization.Visualizer()
    vis.create_window()

    pcd = o3d.geometry.PointCloud()
    flip_transform = [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]

    # Streaming loop
    frame_count = 0
    try:
        while True:

            dt0 = datetime.now()

            # Get frameset of color and depth
github thien94 / vision_to_mavros / scripts / opencv_depth_filtering.py View on Github external
import time
import numpy as np                  # fundamental package for scientific computing
import json

# in order to import cv2 under python3 when you also have ROS installed
import os
if os.path.exists("/opt/ros/kinetic/lib/python2.7/dist-packages"):
    sys.path.remove('/opt/ros/kinetic/lib/python2.7/dist-packages') 
if os.path.exists("~/anaconda3/lib/python3.7/site-packages"):
    sys.path.append('~/anaconda3/lib/python3.7/site-packages')
import cv2

######################################################
##      These parameters are reconfigurable         ##
######################################################
STREAM_TYPE = [rs.stream.depth, rs.stream.color]  # rs2_stream is a types of data provided by RealSense device
FORMAT      = [rs.format.z16, rs.format.bgr8]     # rs2_format is identifies how binary data is encoded within a frame
WIDTH       = 848              # Defines the number of columns for each frame or zero for auto resolve
HEIGHT      = 480              # Defines the number of lines for each frame or zero for auto resolve
FPS         = 30               # Defines the rate of frames per second
DISPLAY_WINDOW_NAME = 'Input/output depth'
OPTION_WINDOW_NAME  = 'Filter options'

USE_PRESET_FILE = True
PRESET_FILE  = "../cfg/d4xx-default.json"

# List of filters to be applied, in this order.
# Depth Frame                       (input)
# >> Decimation Filter              (reduces depth frame density) 
# >> Threshold Filter               (removes values outside recommended range)
# >> Depth2Disparity Transform**    (transform the scene into disparity domain)
# >> Spatial Filter                 (edge-preserving spatial smoothing)
github IntelRealSense / librealsense / wrappers / python / examples / align-depth2color.py View on Github external
profile = pipeline.start(config)

# Getting the depth sensor's depth scale (see rs-align example for explanation)
depth_sensor = profile.get_device().first_depth_sensor()
depth_scale = depth_sensor.get_depth_scale()
print("Depth Scale is: " , depth_scale)

# We will be removing the background of objects more than
#  clipping_distance_in_meters meters away
clipping_distance_in_meters = 1 #1 meter
clipping_distance = clipping_distance_in_meters / depth_scale

# Create an align object
# rs.align allows us to perform alignment of depth frames to others frames
# The "align_to" is the stream type to which we plan to align depth frames.
align_to = rs.stream.color
align = rs.align(align_to)

# Streaming loop
try:
    while True:
        # Get frameset of color and depth
        frames = pipeline.wait_for_frames()
        # frames.get_depth_frame() is a 640x360 depth image

        # Align the depth frame to color frame
        aligned_frames = align.process(frames)

        # Get aligned frames
        aligned_depth_frame = aligned_frames.get_depth_frame() # aligned_depth_frame is a 640x480 depth image
        color_frame = aligned_frames.get_color_frame()
github AoLyu / 3D-Object-Reconstruction-with-RealSense-D435 / ObjectRecognitionUsingPointNet / client.py View on Github external
color_list = [[96/255,96/255,96/255],[1,97/255,0],[227/255,207/255,87/255],[176/255,224/255,230/255],
                [106/255,90/255,205/255],[56/255,94/255,15/255],[61/255,89/255,171/255],[51/255,161/255,201/255],
                [178/255,34/255,34/255],[138/255,43/255,226/255]]
    


    s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    s.connect(('titanxp.sure-to.win',8899))
    print(s.recv(1024).decode('utf-8'))

    align = rs.align(rs.stream.color)
    #align = rs.align(rs.stream.depth)

    config = rs.config()
    config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 15)
    config.enable_stream(rs.stream.color, 640, 480, rs.format.rgb8, 15)
    pipeline = rs.pipeline()
    profile = pipeline.start(config)

    # get camera intrinsics
    intr = profile.get_stream(rs.stream.color).as_video_stream_profile().get_intrinsics()
    # print(intr.width, intr.height, intr.fx, intr.fy, intr.ppx, intr.ppy)
    pinhole_camera_intrinsic = o3d.camera.PinholeCameraIntrinsic(intr.width, intr.height, intr.fx, intr.fy, intr.ppx, intr.ppy)
    # print(type(pinhole_camera_intrinsic))
    
    cv2.namedWindow('Color Stream', cv2.WINDOW_AUTOSIZE)
    cv2.namedWindow('Depth Stream', cv2.WINDOW_AUTOSIZE)

    cam = rgbdTools.Camera(616.8676147460938,617.0631103515625,319.57012939453125,233.06488037109375)


    geometrie_added = False
github IntelRealSense / librealsense / wrappers / python / examples / box_dimensioner_multicam / box_dimensioner_multicam_demo.py View on Github external
# Define some constants 
	resolution_width = 1280 # pixels
	resolution_height = 720 # pixels
	frame_rate = 15  # fps
	dispose_frames_for_stablisation = 30  # frames
	
	chessboard_width = 6 # squares
	chessboard_height = 9 	# squares
	square_size = 0.0253 # meters

	try:
		# Enable the streams from all the intel realsense devices
		rs_config = rs.config()
		rs_config.enable_stream(rs.stream.depth, resolution_width, resolution_height, rs.format.z16, frame_rate)
		rs_config.enable_stream(rs.stream.infrared, 1, resolution_width, resolution_height, rs.format.y8, frame_rate)
		rs_config.enable_stream(rs.stream.color, resolution_width, resolution_height, rs.format.bgr8, frame_rate)

		# Use the device manager class to enable the devices and get the frames
		device_manager = DeviceManager(rs.context(), rs_config)
		device_manager.enable_all_devices()
		
		# Allow some frames for the auto-exposure controller to stablise
		for frame in range(dispose_frames_for_stablisation):
			frames = device_manager.poll_frames()

		assert( len(device_manager._available_devices) > 0 )
		"""
		1: Calibration
		Calibrate all the available devices to the world co-ordinates.
		For this purpose, a chessboard printout for use with opencv based calibration process is needed.
		
		"""