Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test():
""" Optimize a Helium atom's wave function and check that it's
better than Hartree-Fock"""
mol = gto.M(atom="He 0. 0. 0.", basis="bfd_vdz", ecp="bfd", unit="bohr")
mf = scf.RHF(mol).run()
wf, to_opt = default_sj(mol, mf)
print(to_opt)
nconf = 500
wf, dfgrad = line_minimization(
wf, initial_guess(mol, nconf), gradient_generator(mol, wf, to_opt)
)
dfgrad = pd.DataFrame(dfgrad)
print(dfgrad)
mfen = mf.energy_tot()
enfinal = dfgrad["energy"].values[-1]
enfinal_err = dfgrad["energy_error"].values[-1]
assert mfen > enfinal
from pyscf.pbc import gto, scf
from pyqmc.supercell import get_supercell
mol = gto.Cell(atom="He 0.00 0.00 0.00", basis="ccpvdz", unit="B")
mol.a = 5.61 * np.eye(3)
mol.build()
mf = scf.KRHF(mol, kpts=mol.make_kpts([2, 2, 2])).density_fit()
ehf = mf.kernel()
supercell = get_supercell(mol, 2 * np.eye(3))
kinds = [0, 1]
dm_orbs = [mf.mo_coeff[i][:, :2] for i in kinds]
wf, to_opt = pyqmc.default_sj(mol, mf)
accumulators = {
"pgrad": pyqmc.gradient_generator(mol, wf, to_opt, ewald_gmax=10),
"obdm": OBDMAccumulator(mol, dm_orbs, kpts=mf.kpts[kinds]),
"Sq": pyqmc.accumulators.SqAccumulator(mol.lattice_vectors()),
}
info_functions(mol, wf, accumulators)
mol = gto.M(
atom="O 0 0 0; H 0 -2.757 2.587; H 0 2.757 2.587", basis="bfd_vtz", ecp="bfd"
)
mf = scf.RHF(mol).run()
return mol, mf
if __name__ == "__main__":
cluster = LocalCluster(n_workers=ncore, threads_per_worker=1)
client = Client(cluster)
mol, mf = run_scf()
from pyqmc import vmc, line_minimization, rundmc
wf, to_opt = pyqmc.default_sj(mol, mf)
pgrad_acc = pyqmc.gradient_generator(mol, wf, to_opt)
configs = pyqmc.initial_guess(mol, nconfig)
line_minimization(
wf,
configs,
pgrad_acc,
hdf_file="h2o_opt.hdf",
client=client,
npartitions=ncore,
verbose=True,
)
df, configs = vmc(
wf,
configs,
hdf_file="h2o_vmc.hdf",
accumulators={"energy": pgrad_acc.enacc},
client=client,
atom="O 0 0 0; H 0 -2.757 2.587; H 0 2.757 2.587", basis="bfd_vtz", ecp="bfd"
)
mf = scf.RHF(mol).run()
# clean_pyscf_objects gets rid of the TextIO objects that can't
# be sent using parsl.
mol, mf = clean_pyscf_objects(mol, mf)
# It's better to load parsl after pyscf has run. Some of the
# executors have timeouts and will kill the job while pyscf is running!
parsl.load(config)
# We make a Slater-Jastrow wave function and
# only optimize the Jastrow coefficients.
wf = pyqmc.slater_jastrow(mol, mf)
acc = pyqmc.gradient_generator(mol, wf, ["wf2acoeff", "wf2bcoeff"])
# Generate the initial configurations.
# Here we run VMC for a few steps with no accumulators to equilibrate the
# walkers.
configs = pyqmc.initial_guess(mol, nconf)
df, configs = distvmc(wf, configs, accumulators={}, nsteps=10, npartitions=ncore)
# This uses a stochastic reconfiguration step to generate parameter changes along a line,
# then minimizes the energy along that line.
wf, dfgrad, dfline = line_minimization(
wf,
configs,
acc,
npartitions=ncore,
vmcoptions={"nsteps": 30},
def pyqmc_from_hdf(chkfile):
""" Loads pyqmc objects from a pyscf checkfile """
mol = lib.chkfile.load_mol(chkfile)
mol.output = None
mol.stdout = None
mf = scf.RHF(mol)
mf.__dict__.update(scf.chkfile.load(chkfile, "scf"))
with h5py.File(chkfile, "r") as f:
mc = mcscf.CASCI(mf, ncas=int(f["mc/ncas"][...]), nelecas=f["mc/nelecas"][...])
mc.ci = f["mc/ci"][...]
wf, to_opt = pyqmc.default_msj(mol, mf, mc)
to_opt["wf1det_coeff"][...] = True
pgrad = pyqmc.gradient_generator(mol, wf, to_opt)
return {"mol": mol, "mf": mf, "to_opt": to_opt, "wf": wf, "pgrad": pgrad}
if __name__ == "__main__":
import pyscf
import pyqmc
mol = pyscf.gto.M(atom="He 0. 0. 0.", basis="bfd_vdz", ecp="bfd", unit="bohr")
mf = pyscf.scf.RHF(mol).run()
wf, to_opt = pyqmc.default_sj(mol, mf)
nconfig = 1000
configs = pyqmc.initial_guess(mol, nconfig)
acc = pyqmc.gradient_generator(mol, wf, to_opt)
pyqmc.line_minimization(wf, configs, acc, hdf_file="he_opt.hdf5", verbose=True)
pyqmc.rundmc(
wf,
configs,
nsteps=5000,
accumulators={"energy": pyqmc.EnergyAccumulator(mol)},
tstep=0.02,
hdf_file="he_dmc.hdf5",
verbose=True,
)
return cell, kmf
if __name__ == "__main__":
# Run SCF
cell, kmf = run_scf(nk=2)
# Set up wf and configs
nconfig = 100
S = np.eye(3) * 2 # 2x2x2 supercell
supercell = get_supercell(cell, S)
wf, to_opt = pyqmc.default_sj(supercell, kmf)
configs = pyqmc.initial_guess(supercell, nconfig)
# Initialize energy accumulator (and Ewald)
pgrad = pyqmc.gradient_generator(supercell, wf, to_opt=to_opt)
# Optimize jastrow
wf, lm_df = pyqmc.line_minimization(
wf, configs, pgrad, hdf_file="pbc_he_linemin.hdf", verbose=True
)
# Run VMC
df, configs = pyqmc.vmc(
wf,
configs,
nblocks=100,
accumulators={"energy": pgrad.enacc},
hdf_file="pbc_he_vmc.hdf",
verbose=True,
)
from dask.distributed import Client, LocalCluster
r = 1.1
ncore = 2
sys = setuph2(r)
cluster = LocalCluster(n_workers=ncore, threads_per_worker=1)
client = Client(cluster)
# Set up calculation
nconf = 800
configs = pyqmc.initial_guess(sys["mol"], nconf)
wf, df = line_minimization(
sys["wf"],
configs,
pyqmc.gradient_generator(sys["mol"], sys["wf"]),
client=client,
maxiters=5,
)
forcing = {}
obj = {}
for k in sys["descriptors"]:
forcing[k] = 0.0
obj[k] = 0.0
for k in sys["descriptors_tbdm"]:
forcing[k] = 0.0
obj[k] = 0.0
forcing["t"] = 0.5
forcing["trace"] = 1.0