Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
raise SystemExit(
'Threshold value dropped below 1e-5 without producing viable reduced model'
)
logging.info('Threshold value too high, reducing by factor of 10')
continue
logging.info(f'{threshold:^9.2e} | {num_species:^17} | {error_current:^.2f}')
threshold += threshold_increment
first = False
# cleanup files
if previous_model.model.n_species != reduced_model.model.n_species:
os.remove(reduced_model.filename)
previous_model = ReducedModel(
model=reduced_model.model, filename=reduced_model.filename,
error=reduced_model.error, limbo_species=reduced_model.limbo_species
)
if reduced_model.error > error_limit:
threshold -= (2 * threshold_increment)
reduced_model = reduce_pfa(
model_file, species_targets, species_safe, threshold, matrices,
ignition_conditions, sampled_metrics,
threshold_upper=threshold_upper, num_threads=num_threads, path=path
)
else:
soln2cti.write(reduced_model, f'reduced_{reduced_model.model.n_species}.cti', path=path)
logging.info(45 * '-')
logging.info('PFA reduction complete.')
raise SystemExit(
'Threshold value dropped below 1e-5 without producing viable reduced model'
)
logging.info('Threshold value too high, reducing by factor of 10')
continue
logging.info(f'{threshold:^9.2e} | {num_species:^17} | {error_current:^.2f}')
threshold += threshold_increment
first = False
# cleanup files
if previous_model.model.n_species != reduced_model.model.n_species:
os.remove(reduced_model.filename)
previous_model = ReducedModel(
model=reduced_model.model, filename=reduced_model.filename,
error=reduced_model.error, limbo_species=reduced_model.limbo_species
)
if error_current > error_limit:
threshold -= (2 * threshold_increment)
reduced_model = reduce_drg(
model_file, species_targets, species_safe, threshold, matrices,
ignition_conditions, sampled_metrics,
threshold_upper=threshold_upper, num_threads=num_threads, path=path
)
else:
soln2cti.write(reduced_model, f'reduced_{reduced_model.model.n_species}.cti', path=path)
logging.info(45 * '-')
logging.info('DRG reduction complete.')
reduced_model_filename, ignition_conditions, num_threads=num_threads, path=path
)
error = calculate_error(sampled_metrics, reduced_model_metrics)
# If desired, now identify limbo species for future sensitivity analysis
limbo_species = []
if threshold_upper:
species_retained += trim_pfa(
matrix, solution.species_names, species_targets, threshold_upper
)
limbo_species = [
sp for sp in solution.species_names
if sp not in (species_retained + species_safe + species_removed)
]
return ReducedModel(
model=reduced_model, filename=reduced_model_filename,
error=error, limbo_species=limbo_species
)
if error > error_limit:
break
else:
current_model = ReducedModel(model=test_model, filename=test_model_file, error=error)
# If using the greedy algorithm, now need to reevaluate all species errors
if algorithm_type == 'greedy':
species_errors = evaluate_species_errors(
current_model, ignition_conditions, initial_metrics, species_limbo,
phase_name=phase_name, num_threads=num_threads
)
if min(species_errors) > error_limit:
break
# Final model; may need to rewrite
reduced_model = ReducedModel(
model=current_model.model, filename=f'reduced_{current_model.model.n_species}.cti',
error=current_model.error
)
soln2cti.write(reduced_model.model, reduced_model.filename, path=path)
logging.info(53 * '-')
logging.info('Sensitivity analysis stage complete.')
logging.info(f'Skeletal model: {reduced_model.model.n_species} species and '
f'{reduced_model.model.n_reactions} reactions.'
)
logging.info(f'Maximum error: {reduced_model.error:.2f}%')
return reduced_model
List of species to consider; if empty, consider all not in ``species_safe``
num_threads : int, optional
Number of CPU threads to use for performing simulations in parallel.
Optional; default = 1, in which the multiprocessing module is not used.
If 0, then use the available number of cores minus one. Otherwise,
use the specified number of threads.
path : str, optional
Optional path for writing files
Returns
-------
ReducedModel
Return reduced model and associated metadata
"""
current_model = ReducedModel(
model=ct.Solution(model_file, phase_name), error=starting_error, filename=model_file
)
logging.info(f'Beginning sensitivity analysis stage, using {algorithm_type} approach.')
# The metrics for the starting model need to be determined or read
initial_metrics = sample_metrics(
model_file, ignition_conditions, reuse_saved=True, phase_name=phase_name,
num_threads=num_threads, path=path
)
if not species_limbo:
species_limbo = [
sp for sp in current_model.model.species_names if sp not in species_safe
]
reduced_model_filename, ignition_conditions, num_threads=num_threads, path=path
)
error = calculate_error(sampled_metrics, reduced_model_metrics)
# If desired, now identify limbo species for future sensitivity analysis
limbo_species = []
if threshold_upper:
species_retained += trim_drg(
matrix, solution.species_names, species_targets, threshold_upper
)
limbo_species = [
sp for sp in solution.species_names
if sp not in (species_retained + species_safe + species_removed)
]
return ReducedModel(
model=reduced_model, filename=reduced_model_filename,
error=error, limbo_species=limbo_species
)
# will be used to produce graphs for any threshold value.
sampled_metrics, sampled_data = sample(
model_file, ignition_conditions, num_threads=num_threads, path=path
)
matrices = []
for state in sampled_data:
matrices.append(create_drg_matrix((state[0], state[1], state[2:]), solution))
# begin reduction iterations
logging.info('Beginning DRG reduction loop')
logging.info(45 * '-')
logging.info('Threshold | Number of species | Max error (%)')
# start with detailed (starting) model
previous_model = ReducedModel(model=solution, filename=model_file, error=0.0)
first = True
error_current = 0.0
threshold = 0.01
threshold_increment = 0.01
while error_current <= error_limit:
reduced_model = reduce_drg(
model_file, species_targets, species_safe, threshold, matrices,
ignition_conditions, sampled_metrics, previous_model=previous_model,
threshold_upper=threshold_upper, num_threads=num_threads, path=path
)
error_current = reduced_model.error
num_species = reduced_model.model.n_species
# reduce threshold if past error limit on first iteration
if first and error_current > error_limit:
test_model, output_filename=f'reduced_model_{species_remove}.cti', path=temp_dir
)
reduced_model_metrics = sample_metrics(
test_model_file, ignition_conditions, phase_name=phase_name,
num_threads=num_threads, path=path
)
error = calculate_error(initial_metrics, reduced_model_metrics)
logging.info(f'{test_model.n_species:^17} | {species_remove:^17} | {error:^.2f}')
# Ensure new error isn't too high
if error > error_limit:
break
else:
current_model = ReducedModel(model=test_model, filename=test_model_file, error=error)
# If using the greedy algorithm, now need to reevaluate all species errors
if algorithm_type == 'greedy':
species_errors = evaluate_species_errors(
current_model, ignition_conditions, initial_metrics, species_limbo,
phase_name=phase_name, num_threads=num_threads
)
if min(species_errors) > error_limit:
break
# Final model; may need to rewrite
reduced_model = ReducedModel(
model=current_model.model, filename=f'reduced_{current_model.model.n_species}.cti',
error=current_model.error
)
soln2cti.write(reduced_model.model, reduced_model.filename, path=path)
# Cut the exclusion list from the model.
reduced_model = trim(
model_file, species_removed, f'reduced_{model_file}', phase_name=phase_name
)
reduced_model_filename = soln2cti.write(
reduced_model, f'reduced_{reduced_model.n_species}.cti', path=path
)
reduced_model_metrics = sample_metrics(
reduced_model_filename, ignition_conditions, phase_name=phase_name,
num_threads=num_threads, path=path
)
error = calculate_error(sampled_metrics, reduced_model_metrics)
return ReducedModel(
model=reduced_model, filename=reduced_model_filename, error=error
)