Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def _load_config(self):
self.set_config(ConfigFactory.parse_file(self.conf_path))
def main():
if len(sys.argv) != 2:
print('USAGE: retrieve_background.py [param_file]')
sys.exit(-1)
param_file = sys.argv[1]
params = pyhocon.ConfigFactory.parse_file(param_file)
params = replace_none(params)
retrieval_params = params.pop('retrieval')
corpus_file = params.pop('corpus', None)
question_params = params.pop('questions')
question_file = question_params.pop('file')
question_format = question_params.pop('format', 'sentence')
num_neighbors = params.pop('num_neighbors', 50)
output_file = params.pop('output', None)
if output_file is None:
output_file = question_file.rsplit('.', 1)[0] + ".retrieved_background.tsv"
retrieval = VectorBasedRetrieval(retrieval_params)
if corpus_file is not None:
retrieval.read_background(corpus_file)
retrieval.fit()
def initialize_from_env(eval_test=False):
if "GPU" in os.environ:
set_gpus(int(os.environ["GPU"]))
name = sys.argv[1]
print("Running experiment: {}".format(name))
if eval_test:
config = pyhocon.ConfigFactory.parse_file("test.experiments.conf")[name]
else:
config = pyhocon.ConfigFactory.parse_file("experiments.conf")[name]
config["log_dir"] = mkdirs(os.path.join(config["log_root"], name))
print(pyhocon.HOCONConverter.convert(config, "hocon"))
return config
def initialize_from_env(eval_test=False):
if "GPU" in os.environ:
set_gpus(int(os.environ["GPU"]))
name = sys.argv[1]
print("Running experiment: {}".format(name))
if eval_test:
config = pyhocon.ConfigFactory.parse_file("test.experiments.conf")[name]
else:
config = pyhocon.ConfigFactory.parse_file("experiments.conf")[name]
config["log_dir"] = mkdirs(os.path.join(config["log_root"], name))
print(pyhocon.HOCONConverter.convert(config, "hocon"))
return config
def serve(config_file: str):
# read in the Typesafe-style config file and lookup the port to run on.
params = ConfigFactory.parse_file(config_file)
server_params = params['server']
port = server_params['port']
# create the server and add our RPC "servicer" to it
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
solver_params = params['solver']
model_type = get_choice(solver_params, 'solver_class', concrete_models.keys())
solver_class = concrete_models[model_type]
solver = solver_class(solver_params)
message_pb2.add_SolverServiceServicer_to_server(SolverServer(solver), server)
# start the server on the specified port
server.add_insecure_port('[::]:{0}'.format(port))
print("starting server")
server.start()
Loads and returns a model.
Parameters
----------
param_path: str, required
A json file specifying a DeepQaModel.
model_class: DeepQaModel, optional (default=None)
This option is useful if you have implemented a new model
class which is not one of the ones implemented in this library.
Returns
-------
A ``DeepQaModel`` instance.
"""
logger.info("Loading model from parameter file: %s", param_path)
param_dict = pyhocon.ConfigFactory.parse_file(param_path)
params = Params(replace_none(param_dict))
prepare_environment(params)
from deep_qa.models import concrete_models
if model_class is None:
model_type = params.pop_choice('model_class', concrete_models.keys())
model_class = concrete_models[model_type]
else:
if params.pop('model_class', None) is not None:
raise ConfigurationError("You have specified a local model class and passed a model_class argument"
"in the json specification. These options are mutually exclusive.")
model = model_class(params)
model.load_model()
return model
pv = SegmentationProvider()
# DEFAULT SETTINGS
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--batch', type=int, default=5, help='Batch Size during training [default: 32]')
parser.add_argument('--epoch', type=int, default=200, help='Epoch to run [default: 50]')
parser.add_argument('--point_num', type=int, default=2048, help='Point Number [256/512/1024/2048]')
parser.add_argument('--output_dir', type=str, default='train_results', help='Directory that stores all training logs and trained models')
parser.add_argument('--wd', type=float, default=0, help='Weight Decay [Default: 0.0]')
parser.add_argument('--config', type=str, default='pointconv_seg', help='Config file name')
parser.add_argument('--expname', type=str, default='segmentation', help='Config file name')
parser.add_argument('--hypothesis', type=str, default='', help='Config file name')
FLAGS = parser.parse_args()
conf = ConfigFactory.parse_file('../confs/{0}.conf'.format(FLAGS.config))
os.environ["CUDA_VISIBLE_DEVICES"] = '{0}'.format(FLAGS.gpu)
hdf5_data_dir = os.path.join(BASE_DIR, 'segmentation_data/hdf5_data')
# MAIN SCRIPT
point_num = FLAGS.point_num
batch_size = FLAGS.batch
timestamp = '{:%Y_%m_%d_%H_%M_%S}'.format(datetime.datetime.now())
if not os.path.exists(FLAGS.output_dir):
os.mkdir(FLAGS.output_dir)
output_dir = os.path.join(FLAGS.output_dir,timestamp)
if not os.path.exists(output_dir):
def get_config(filename, exp_name=None, save_path=None):
config_dict = pyhocon.ConfigFactory.parse_file(filename)
if exp_name is not None and exp_name in config_dict:
config_dict = config_dict[exp_name]
config = Config(**config_dict)
if save_path is not None:
config.save_path = save_path
return config