How to use the pydot.graph_from_dot_data function in pydot

To help you get started, we’ve selected a few pydot examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github columbia / fairtest / src_new_api / fairtest / bugreport / trees / categorical_tree.py View on Github external
----------
    tree :
        The tree structure

    outfile :
        The output file

    encoders :
        The encoders used to encode categorical features

    is_spark :
        If the tree was produced by Spark or not
    """
    dot_data = StringIO()
    export_graphviz(tree, encoders, out_file=dot_data, is_spark=is_spark)
    graph = pydot.graph_from_dot_data(dot_data.getvalue())
    graph.write_pdf(outfile)
github sperez8 / HivePanelExplorer / hivepanel / networkx_copy / drawing / nx_pydot.py View on Github external
P=to_pydot(G)
    if root is not None :
        P.set("root",make_str(root))

    D=P.create_dot(prog=prog)

    if D=="":  # no data returned
        print("Graphviz layout with %s failed"%(prog))
        print()
        print("To debug what happened try:")
        print("P=pydot_from_networkx(G)")
        print("P.write_dot(\"file.dot\")")
        print("And then run %s on file.dot"%(prog))
        return

    Q=pydot.graph_from_dot_data(D)

    node_pos={}
    for n in G.nodes():
        pydot_node = pydot.Node(make_str(n)).get_name().encode('utf-8')
        node=Q.get_node(pydot_node)

        if isinstance(node,list):
            node=node[0]
        pos=node.get_pos()[1:-1] # strip leading and trailing double quotes
        if pos != None:
            xx,yy=pos.split(",")
            node_pos[n]=(float(xx),float(yy))
    return node_pos
github algorithmica-repository / datascience / 2017-may / 11.classification algorithms / ensemble learning / extreme-trees.py View on Github external
#cv accuracy for bagged tree ensemble
et_estimator1 = ensemble.ExtraTreesClassifier(n_estimators=5, max_features=4)
scores = model_selection.cross_val_score(et_estimator1, X_train, y_train, cv = 10)
print(scores.mean())
et_estimator1.fit(X_train, y_train)

et_estimator1.estimators_

#extracting all the trees build by random forest algorithm
n_tree = 0
for est in et_estimator1.estimators_: 
    dot_data = io.StringIO()
    tmp = est.tree_
    tree.export_graphviz(tmp, out_file = dot_data, feature_names = X_train.columns)
    graph = pydot.graph_from_dot_data(dot_data.getvalue())[0] 
    graph.write_pdf("extratree" + str(n_tree) + ".pdf")
    n_tree = n_tree + 1
github Hochikong / ML-SDN / TEST2 / tool / diff.py View on Github external
train_data = shelve.open(train_sample)
metadata = shelve.open(pcap_metadata)

sample = train_data['res'][0]
labels = train_data['res'][1]

pcap_meta = metadata['res']

#train 
clf = tree.DecisionTreeClassifier(criterion='entropy')
clf.fit(sample,labels)

#generate pdf 
dot_data = StringIO()
tree.export_graphviz(clf,out_file=dot_data)
graph = pydot.graph_from_dot_data(dot_data.getvalue())

#classify
metadata_length = len(pcap_meta)
index = 0
tmp = []

def classifier(data,clf):
    answer = clf.predict(data)
    if answer[0] == 'TARGET':
        return 'one'
    else:
        return 'next'

while index < metadata_length:
    result = classifier(pcap_meta[index],clf)
    if result == 'one':
github lhm30 / PIDGINv2 / predict_enriched_two_libraries_decision_tree.py View on Github external
clf.fit(matrix,vector)
	dot_data = StringIO()
	tree.export_graphviz(clf, out_file=dot_data,
							feature_names=label,
							class_names=['File2','File1'],
							filled=True, rounded=True,
							special_characters=True,
							proportion=False,
							impurity=True)
	out_tree = dot_data.getvalue()
	out_tree = out_tree.replace('True','Inactive').replace('False','Active').replace(' ≤ 0.5', '')
	graph = pydot.graph_from_dot_data(str(out_tree))
	try:
		graph.write_jpg(output_name_tree)
	except AttributeError:
		graph = pydot.graph_from_dot_data(str(out_tree))[0]
		graph.write_jpg(output_name_tree)
	return
github algorithmica-repository / datascience / 2017-may / 11.classification algorithms / ensemble learning / bagged tree.py View on Github external
bag_tree_estimator1.fit(X_train, y_train)

#oob accuracy for bagged tree ensemble
bag_tree_estimator2 = ensemble.BaggingClassifier(dt_estimator, 5, oob_score=True)
bag_tree_estimator2.fit(X_train, y_train)
bag_tree_estimator2.oob_score_

bag_tree_estimator1.estimators_

#extracting all the trees build by random forest algorithm
n_tree = 0
for est in bag_tree_estimator1.estimators_: 
    dot_data = io.StringIO()
    tmp = est.tree_
    tree.export_graphviz(tmp, out_file = dot_data, feature_names = X_train.columns)
    graph = pydot.graph_from_dot_data(dot_data.getvalue())[0] 
    graph.write_pdf("bagtree" + str(n_tree) + ".pdf")
    n_tree = n_tree + 1
github algorithmica-repository / datascience / 2017-may / 4.kaggle-classification-II / ML-introduction3.py View on Github external
titanic_train1 = pd.get_dummies(titanic_train, columns=['Pclass', 'Sex', 'Embarked'])
titanic_train1.shape
titanic_train1.info()
titanic_train1.head(6)

X_train = titanic_train1.drop(['PassengerId','Age','Cabin','Ticket', 'Name','Survived'], 1)
y_train = titanic_train['Survived']

#build the decision tree model
dt = tree.DecisionTreeClassifier()
dt.fit(X_train,y_train)

#visualize the deciion tree
dot_data = io.StringIO() 
tree.export_graphviz(dt, out_file = dot_data, feature_names = X_train.columns)
graph = pydot.graph_from_dot_data(dot_data.getvalue())[0] 
graph.write_pdf("decisiont-tree.pdf")

#predict the outcome using decision tree
titanic_test = pd.read_csv("test.csv")
titanic_test.Fare[titanic_test['Fare'].isnull()] = titanic_test['Fare'].mean()


titanic_test1 = pd.get_dummies(titanic_test, columns=['Pclass', 'Sex', 'Embarked'])
titanic_test1.shape
titanic_test1.info()
titanic_test1.head(6)

X_test = titanic_test1.drop(['PassengerId','Age','Cabin','Ticket', 'Name'], 1)
titanic_test['Survived'] = dt.predict(X_test)
titanic_test.to_csv("submission.csv", columns=['PassengerId','Survived'], index=False)
github maranemil / howto / datamining / opencv_machinelearning / datacamp / sklearn_datacamp_google_machine_learning_krs.py View on Github external
print test_target
print clf.predict(test_data)

# viz code
from sklearn.externals.six import StringIO
import pydot
dot_data = StringIO()
tree.export_graphviz(clf,
        out_file=dot_data,
        feature_names=iris.feature_names,
        class_names=iris.target_names,
        filled=True, rounded=True,
        impurity=False)

graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph.write_pdf("iris.pdf")

#graph = pydot.graph_from_dot_data(dot_data.getvalue())
#graph[0].write_pdf("iris.pdf")

#import pydotplus
#...
#graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
#graph.write_pdf("iris.pdf")


"""

from sklearn.externals.six import StringIO  
import pydot 
dot_data = StringIO() 
github nrudenko / anarcho / anarchoApp / APKParser / bytecode.py View on Github external
import pydot
    except ImportError :
        error("module pydot not found")

    buff = "digraph code {\n"
    buff += "graph [bgcolor=white];\n"
    buff += "node [color=lightgray, style=filled shape=box fontname=\"Courier\" fontsize=\"8\"];\n"

    if raw == False :
        buff += method2dot( mx )
    else :
        buff += raw

    buff += "}"

    d = pydot.graph_from_dot_data( buff )
    if d :
        getattr(d, "write_" + _format)( output )
github ansible / awx / awx / lib / site-packages / django_extensions / management / commands / graph_models.py View on Github external
def render_output_pydot(self, dotdata, **kwargs):
        """Renders the image using pydot"""
        if not HAS_PYDOT:
            raise CommandError("You need to install pydot python module")

        graph = pydot.graph_from_dot_data(dotdata)
        if not graph:
            raise CommandError("pydot returned an error")
        output_file = kwargs['outputfile']
        formats = ['bmp', 'canon', 'cmap', 'cmapx', 'cmapx_np', 'dot', 'dia', 'emf',
                   'em', 'fplus', 'eps', 'fig', 'gd', 'gd2', 'gif', 'gv', 'imap',
                   'imap_np', 'ismap', 'jpe', 'jpeg', 'jpg', 'metafile', 'pdf',
                   'pic', 'plain', 'plain-ext', 'png', 'pov', 'ps', 'ps2', 'svg',
                   'svgz', 'tif', 'tiff', 'tk', 'vml', 'vmlz', 'vrml', 'wbmp', 'xdot']
        ext = output_file[output_file.rfind('.') + 1:]
        format = ext if ext in formats else 'raw'
        graph.write(output_file, format=format)