How to use the pydash.is_empty function in pydash

To help you get started, we’ve selected a few pydash examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github dgilland / pydash / tests / test_predicates.py View on Github external
def test_is_empty(case, expected):
    assert _.is_empty(case) == expected
github ConvLab / ConvLab / convlab / agent / net / net_util.py View on Github external
def get_lr_scheduler(optim, lr_scheduler_spec):
    '''Helper to parse lr_scheduler param and construct Pytorch optim.lr_scheduler'''
    if ps.is_empty(lr_scheduler_spec):
        lr_scheduler = NoOpLRScheduler(optim)
    elif lr_scheduler_spec['name'] == 'LinearToZero':
        LRSchedulerClass = getattr(torch.optim.lr_scheduler, 'LambdaLR')
        frame = float(lr_scheduler_spec['frame'])
        lr_scheduler = LRSchedulerClass(optim, lr_lambda=lambda x: 1 - x / frame)
    else:
        LRSchedulerClass = getattr(torch.optim.lr_scheduler, lr_scheduler_spec['name'])
        lr_scheduler_spec = ps.omit(lr_scheduler_spec, 'name')
        lr_scheduler = LRSchedulerClass(optim, **lr_scheduler_spec)
    return lr_scheduler
github kengz / SLM-Lab / slm_lab / lib / util.py View on Github external
def flatten_dict(obj, delim='.'):
    '''Missing pydash method to flatten dict'''
    nobj = {}
    for key, val in obj.items():
        if ps.is_dict(val) and not ps.is_empty(val):
            strip = flatten_dict(val, delim)
            for k, v in strip.items():
                nobj[key + delim + k] = v
        elif ps.is_list(val) and not ps.is_empty(val) and ps.is_dict(val[0]):
            for idx, v in enumerate(val):
                nobj[key + delim + str(idx)] = v
                if ps.is_object(v):
                    nobj = flatten_dict(nobj, delim)
        else:
            nobj[key] = val
    return nobj
github kengz / SLM-Lab / slm_lab / agent / net / mlp.py View on Github external
def build_model_tails(self, out_dim, out_layer_activation):
        '''Build each model_tail. These are stored as Sequential models in model_tails'''
        if not ps.is_list(out_layer_activation):
            out_layer_activation = [out_layer_activation] * len(out_dim)
        model_tails = nn.ModuleList()
        if ps.is_empty(self.tail_hid_layers):
            for out_d, out_activ in zip(out_dim, out_layer_activation):
                tail = net_util.build_fc_model([self.body_hid_layers[-1], out_d], out_activ)
                model_tails.append(tail)
        else:
            assert len(self.tail_hid_layers) == len(out_dim), 'Hydra tail hid_params inconsistent with number out dims'
            for out_d, out_activ, hid_layers in zip(out_dim, out_layer_activation, self.tail_hid_layers):
                dims = hid_layers
                model_tail = net_util.build_fc_model(dims, self.hid_layers_activation)
                tail_out = net_util.build_fc_model([dims[-1], out_d], out_activ)
                model_tail.add_module(str(len(model_tail)), tail_out)
                model_tails.append(model_tail)
        return model_tails
github kengz / SLM-Lab / slm_lab / agent / net / recurrent.py View on Github external
'bidirectional',
            'seq_len',
            'init_fn',
            'clip_grad_val',
            'loss_spec',
            'optim_spec',
            'lr_scheduler_spec',
            'update_type',
            'update_frequency',
            'polyak_coef',
            'gpu',
        ])
        # restore proper in_dim from env stacked state_dim (stack_len, *raw_state_dim)
        self.in_dim = in_dim[1:] if len(in_dim) > 2 else in_dim[1]
        # fc body: state processing model
        if ps.is_empty(self.fc_hid_layers):
            self.rnn_input_dim = self.in_dim
        else:
            fc_dims = [self.in_dim] + self.fc_hid_layers
            self.fc_model = net_util.build_fc_model(fc_dims, self.hid_layers_activation)
            self.rnn_input_dim = fc_dims[-1]

        # RNN model
        self.rnn_model = getattr(nn, net_util.get_nn_name(self.cell_type))(
            input_size=self.rnn_input_dim,
            hidden_size=self.rnn_hidden_size,
            num_layers=self.rnn_num_layers,
            batch_first=True, bidirectional=self.bidirectional)

        # tails. avoid list for single-tail for compute speed
        if ps.is_integer(self.out_dim):
            self.model_tail = net_util.build_fc_model([self.rnn_hidden_size, self.out_dim], self.out_layer_activation)
github kengz / SLM-Lab / slm_lab / experiment / monitor.py View on Github external
def calc_df_row(self, env):
        '''Calculate a row for updating train_df or eval_df.'''
        frame = self.env.clock.get('frame')
        wall_t = env.clock.get_elapsed_wall_t()
        fps = 0 if wall_t == 0 else frame / wall_t

        # update debugging variables
        if net_util.to_check_train_step():
            grad_norms = net_util.get_grad_norms(self.agent.algorithm)
            self.mean_grad_norm = np.nan if ps.is_empty(grad_norms) else np.mean(grad_norms)

        row = pd.Series({
            # epi and frame are always measured from training env
            'epi': self.env.clock.get('epi'),
            # t and reward are measured from a given env or eval_env
            't': env.clock.get('t'),
            'wall_t': wall_t,
            'opt_step': self.env.clock.get('opt_step'),
            'frame': frame,
            'fps': fps,
            'total_reward': np.nanmean(self.total_reward),  # guard for vec env
            'total_reward_ma': np.nan,  # update outside
            'loss': self.loss,
            'lr': self.get_mean_lr(),
            'explore_var': self.explore_var,
            'entropy_coef': self.entropy_coef if hasattr(self, 'entropy_coef') else np.nan,
github kengz / SLM-Lab / slm_lab / agent / __init__.py View on Github external
def calc_df_row(self, env):
        '''Calculate a row for updating train_df or eval_df.'''
        frame = self.env.clock.get('frame')
        wall_t = env.clock.get_elapsed_wall_t()
        fps = 0 if wall_t == 0 else frame / wall_t

        # update debugging variables
        if net_util.to_check_train_step():
            grad_norms = net_util.get_grad_norms(self.agent.algorithm)
            self.mean_grad_norm = np.nan if ps.is_empty(grad_norms) else np.mean(grad_norms)

        row = pd.Series({
            # epi and frame are always measured from training env
            'epi': self.env.clock.get('epi'),
            # t and reward are measured from a given env or eval_env
            't': env.clock.get('t'),
            'wall_t': wall_t,
            'opt_step': self.env.clock.get('opt_step'),
            'frame': frame,
            'fps': fps,
            'total_reward': np.nanmean(self.total_reward),  # guard for vec env
            'total_reward_ma': np.nan,  # update outside
            'loss': self.loss,
            'lr': self.get_mean_lr(),
            'explore_var': self.explore_var,
            'entropy_coef': self.entropy_coef if hasattr(self, 'entropy_coef') else np.nan,
github ConvLab / ConvLab / convlab / agent / __init__.py View on Github external
def calc_df_row(self, env):
        '''Calculate a row for updating train_df or eval_df.'''
        frame = self.env.clock.get('frame')
        wall_t = env.clock.get_elapsed_wall_t()
        fps = 0 if wall_t == 0 else frame / wall_t

        # update debugging variables
        if net_util.to_check_train_step():
            grad_norms = net_util.get_grad_norms(self.agent.algorithm)
            self.mean_grad_norm = np.nan if ps.is_empty(grad_norms) else np.mean(grad_norms)

        row = pd.Series({
            # epi and frame are always measured from training env
            'epi': self.env.clock.get('epi'),
            # t and reward are measured from a given env or eval_env
            't': env.clock.get('t'),
            'wall_t': wall_t,
            'opt_step': self.env.clock.get('opt_step'),
            'frame': frame,
            'fps': fps,
            'total_reward': np.nanmean(self.total_reward),  # guard for vec env
            'avg_return': np.nan,  # update outside
            'avg_len': np.nan,  # update outside
            'avg_success': np.nan,  # update outside
            'loss': self.loss,
            'lr': self.get_mean_lr(),

pydash

The kitchen sink of Python utility libraries for doing "stuff" in a functional way. Based on the Lo-Dash Javascript library.

MIT
Latest version published 2 months ago

Package Health Score

90 / 100
Full package analysis

Similar packages