Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
:param actual_vector: Actual Vector
:type actual_vector: python list or numpy array of any stringable objects
:param predict_vector: Predicted Vector
:type predict_vector: python list or numpy array of any stringable objects
:param threshold : activation threshold function
:type threshold : FunctionType (function or lambda)
:param sample_weight : sample weights list
:type sample_weight : list
:return: matrix parameters as list
"""
if isinstance(threshold, types.FunctionType):
predict_vector = list(map(threshold, predict_vector))
cm.predict_vector = predict_vector
if not isinstance(actual_vector, (list, numpy.ndarray)) or not \
isinstance(predict_vector, (list, numpy.ndarray)):
raise pycmVectorError(VECTOR_TYPE_ERROR)
if len(actual_vector) != len(predict_vector):
raise pycmVectorError(VECTOR_SIZE_ERROR)
if len(actual_vector) == 0 or len(predict_vector) == 0:
raise pycmVectorError(VECTOR_EMPTY_ERROR)
matrix_param = matrix_params_calc(
actual_vector, predict_vector, sample_weight)
if isinstance(sample_weight, (list, numpy.ndarray)):
cm.weights = sample_weight
return matrix_param
:param threshold : activation threshold function
:type threshold : FunctionType (function or lambda)
:param sample_weight : sample weights list
:type sample_weight : list
:return: matrix parameters as list
"""
if isinstance(threshold, types.FunctionType):
predict_vector = list(map(threshold, predict_vector))
cm.predict_vector = predict_vector
if not isinstance(actual_vector, (list, numpy.ndarray)) or not \
isinstance(predict_vector, (list, numpy.ndarray)):
raise pycmVectorError(VECTOR_TYPE_ERROR)
if len(actual_vector) != len(predict_vector):
raise pycmVectorError(VECTOR_SIZE_ERROR)
if len(actual_vector) == 0 or len(predict_vector) == 0:
raise pycmVectorError(VECTOR_EMPTY_ERROR)
matrix_param = matrix_params_calc(
actual_vector, predict_vector, sample_weight)
if isinstance(sample_weight, (list, numpy.ndarray)):
cm.weights = sample_weight
return matrix_param
:param predict_vector: Predicted Vector
:type predict_vector: python list or numpy array of any stringable objects
:param threshold : activation threshold function
:type threshold : FunctionType (function or lambda)
:param sample_weight : sample weights list
:type sample_weight : list
:return: matrix parameters as list
"""
if isinstance(threshold, types.FunctionType):
predict_vector = list(map(threshold, predict_vector))
cm.predict_vector = predict_vector
if not isinstance(actual_vector, (list, numpy.ndarray)) or not \
isinstance(predict_vector, (list, numpy.ndarray)):
raise pycmVectorError(VECTOR_TYPE_ERROR)
if len(actual_vector) != len(predict_vector):
raise pycmVectorError(VECTOR_SIZE_ERROR)
if len(actual_vector) == 0 or len(predict_vector) == 0:
raise pycmVectorError(VECTOR_EMPTY_ERROR)
matrix_param = matrix_params_calc(
actual_vector, predict_vector, sample_weight)
if isinstance(sample_weight, (list, numpy.ndarray)):
cm.weights = sample_weight
return matrix_param