Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
for x in np.arange(-1, 1, e_spacing):
for y in np.arange(-1, 1, e_spacing):
xlist.append(x)
ylist.append(y)
rlist.append(100) # electrode radiues
hlist.append(0); #179.6) # electrode lift from retinal surface,
# epiretinal array - distance to the ganglion layer
# subretinal array - distance to the bipolar layer
# in Argus 1 179.6 is a good approx of height in a better patient
e_all = e2cm.ElectrodeArray(rlist,xlist,ylist,hlist, ptype='epiretinal')
# create retina, input variables include the sampling and how much of the retina is simulated, in microns
# (0,0 represents the fovea)
retinaname='SmallL80S75WL500'
r = e2cm.Retina(axon_map=None,sampling=75, ylo=-500, yhi=500, xlo=-500, xhi=500, axon_lambda=8)
# the effective current spread that incorporates axonal stimulation
myout=[]
d=.1
fps=30
pt=[]
inl_out=[]
nfl_out=[]
modelver='Krishnan'
#for d in [.1, .2, .45, .75, 1., 2., 4., 8., 16., 32.]:
tm = ec2b.TemporalModel()
rsample=int(np.round((1/tm.tsample) / 60 )) # resampling of the output to fps
# at 0 off the retinal surface a 0.45 pulse in the nfl gives a response of 1
tm = TemporalModel(pt_list[0].tsample)
elif not isinstance(tm, TemporalModel):
raise TypeError("`tm` must be of type ec2b.TemporalModel")
# Generate a retina if necessary
if retina is None:
# Make sure implant fits on retina
round_to = 500 # round to nearest (microns)
cspread = 500 # expected current spread (microns)
xs = [a.x_center for a in implant]
ys = [a.y_center for a in implant]
xlo = np.floor((np.min(xs) - cspread) / round_to) * round_to
xhi = np.ceil((np.max(xs) + cspread) / round_to) * round_to
ylo = np.floor((np.min(ys) - cspread) / round_to) * round_to
yhi = np.ceil((np.max(ys) + cspread) / round_to) * round_to
retina = e2cm.Retina(xlo=xlo, xhi=xhi, ylo=ylo, yhi=yhi,
save_data=False)
elif not isinstance(retina, e2cm.Retina):
raise TypeError("`retina` object must be of type e2cm.Retina")
# Perform any necessary calculations per electrode
pt_list = utils.parfor(tm.calc_per_electrode, pt_list, engine=engine,
n_jobs=n_jobs)
# Which layer to simulate is given by implant type.
# For now, both implant types process the same two layers. In the
# future, these layers might differ. Order doesn't matter.
if implant.etype == 'epiretinal':
dolayers = ['NFL', 'INL'] # nerve fiber layer
elif implant.etype == 'subretinal':
dolayers = ['NFL', 'INL'] # inner nuclear layer
else:
for x in np.arange(-252, 500, e_spacing):
for y in np.arange(-252, 500, e_spacing):
xlist.append(x)
ylist.append(y)
rlist.append(100) # electrode radiues
hlist.append(0); #179.6) # electrode lift from retinal surface,
# epiretinal array - distance to the ganglion layer
# subretinal array - distance to the bipolar layer
# in Argus 1 179.6 is a good approx of height in a better patient
e_all = e2cm.ElectrodeArray(rlist,xlist,ylist,hlist, ptype='epiretinal')
# create retina, input variables include the sampling and how much of the retina is simulated, in microns
# (0,0 represents the fovea)
retinaname='SmallL80S75WL500'
r = e2cm.Retina(axon_map=None,sampling=75, ylo=-500, yhi=500, xlo=-500, xhi=500, axon_lambda=8)
# the effective current spread that incorporates axonal stimulation
myout=[]
d=.1
fps=30
pt=[]
inl_out=[]
nfl_out=[]
modelver='Krishnan'
tm = ec2b.TemporalModel(lweight= (1 / (3.16 * (10 ** 6))))
#for d in [.1, .2, .45, .75, 1., 2., 4., 8., 16., 32.]:
scFac = 2.41 * (10**3)
# at 0 off the retinal surface a 0.45 pulse in the nfl gives a response of 1
for x in np.arange(-1, 1, e_spacing):
for y in np.arange(-1, 1, e_spacing):
xlist.append(x)
ylist.append(y)
rlist.append(100) # electrode radiues
hlist.append(0); #179.6) # electrode lift from retinal surface,
# epiretinal array - distance to the ganglion layer
# subretinal array - distance to the bipolar layer
# in Argus 1 179.6 is a good approx of height in a better patient
e_all = e2cm.ElectrodeArray(rlist,xlist,ylist,hlist, ptype='epiretinal')
# create retina, input variables include the sampling and how much of the retina is simulated, in microns
# (0,0 represents the fovea)
retinaname='SmallL80S75WL500'
r = e2cm.Retina(axon_map=None,sampling=75, ylo=-500, yhi=500, xlo=-500, xhi=500, axon_lambda=8)
# the effective current spread that incorporates axonal stimulation
myout=[]
d=.1
fps=30
pt=[]
inl_out=[]
nfl_out=[]
modelver='Krishnan'
#for d in [.1, .2, .45, .75, 1., 2., 4., 8., 16., 32.]:
tm = ec2b.TemporalModel()
rsample=int(np.round((1/tm.tsample) / 60 )) # resampling of the output to fps