Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
- intersept
- yhat_lo (lower confidence interval of the estimated y-vals)
- yhat_hi (upper confidence interval of the estimated y-vals)
"""
fitprobs = validate.fit_argument(fitprobs, "fitprobs")
fitlogs = validate.fit_argument(fitlogs, "fitlogs")
# maybe set xhat to default values
if xhat is None:
xhat = copy.copy(x)
# maybe set dist to default value
if dist is None:
dist = _minimal_norm
# maybe compute ppf of x
if fitprobs in ['x', 'both']:
x = dist.ppf(x / 100.)
xhat = dist.ppf(numpy.array(xhat) / 100.)
# maybe compute ppf of y
if fitprobs in ['y', 'both']:
y = dist.ppf(y / 100.)
# maybe compute log of x
if fitlogs in ['x', 'both']:
x = numpy.log(x)
# maybe compute log of y
if fitlogs in ['y', 'both']:
def __init__(self, axis, **kwargs):
self.dist = kwargs.pop('dist', _minimal_norm)
self.as_pct = kwargs.pop('as_pct', True)
self.nonpos = kwargs.pop('nonpos', 'mask')
self._transform = ProbTransform(self.dist, as_pct=self.as_pct)
Quantile plot with the quantiles on the x-axis
.. plot::
:context: close-figs
>>> fig = probplot(data, plottype='qq', probax='x',
... problabel='Theoretical Quantiles',
... datalabel='Observed values', bestfit=True,
... line_kws=dict(linestyle='-', linewidth=2),
... scatter_kws=dict(marker='s', alpha=0.5))
"""
if dist is None:
dist = _minimal_norm
# check input values
fig, ax = validate.axes_object(ax)
probax = validate.axis_name(probax, 'probability axis')
problabel = validate.axis_label(problabel)
datalabel = validate.axis_label(datalabel)
# default values for symbology options
scatter_kws = validate.other_options(scatter_kws)
line_kws = validate.other_options(line_kws)
pp_kws = validate.other_options(pp_kws)
# check plottype
plottype = validate.axis_type(plottype)
# !-- kwarg that only seaborn should use --!