Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def setup_class(self):
plt.close('all')
self.im = sp.random.randint(0, 10, 20)
sp.random.seed(0)
self.blobs = ps.generators.blobs(shape=[101, 101])
self.im2D = ps.generators.blobs(shape=[51, 51])
self.im3D = ps.generators.blobs(shape=[51, 51, 51])
self.labels, N = spim.label(input=self.blobs)
def setup_class(self):
self.im = ps.generators.blobs(shape=[51, 51, 51])
def setup_class(self):
self.im = ps.generators.blobs(shape=[300, 300])
self.snow = ps.filters.snow_partitioning(self.im, return_all=True)
self.im3d = ps.generators.blobs(shape=[50, 50, 50])
self.snow3d = ps.filters.snow_partitioning(self.im3d, return_all=True)
def test_voronoi_edges(self):
sp.random.seed(0)
im = ps.generators.voronoi_edges(shape=[50, 50, 50],
radius=2,
ncells=25,
flat_faces=True)
top_slice = im[:, :, 0]
assert sp.sum(top_slice) == 1409
def setup_class(self):
self.im = sp.random.randint(0, 10, 20)
sp.random.seed(0)
self.blobs = ps.generators.blobs(shape=[101, 101])
self.im2D = ps.generators.blobs(shape=[51, 51])
self.im3D = ps.generators.blobs(shape=[51, 51, 51])
self.labels, N = spim.label(input=self.blobs)
def setup_class(self):
self.im = sp.random.randint(0, 10, 20)
sp.random.seed(0)
self.blobs = ps.generators.blobs(shape=[101, 101])
self.im2D = ps.generators.blobs(shape=[51, 51])
self.im3D = ps.generators.blobs(shape=[51, 51, 51])
self.labels, N = spim.label(input=self.blobs)
def setup_class(self):
self.l = 100
self.im = ps.generators.overlapping_spheres(shape=[self.l, self.l],
radius=5,
porosity=0.5)
self.mip = ps.simulations.Porosimetry(self.im)
self.blobs = ps.generators.blobs([self.l, self.l, self.l])
self.big_im = big_im.copy()
plt.figure()
if self.dim == 3:
big_im = big_im[:, :, slice_ind]
masked_array = np.ma.masked_where(big_im == self.solid_value-2, big_im)
cmap = matplotlib.cm.brg
cmap.set_bad(color='black')
plt.imshow(masked_array, cmap=cmap)
if __name__ == "__main__":
if 1 == 1:
# Load tau test image
im = 1 - ps.data.tau()
else:
im = ps.generators.blobs(100).astype(int)
# Number of time steps and walkers
num_t = 10000
num_w = 1
# Track time of simulation
st = time.time()
rw = VRandomWalk(im)
rw.run(num_t, num_w, same_start=False)
# Plot mean square displacement
rw.plot_msd()
# Plot the longest walk
rw.plot_walk(w_id=np.argmax(rw.sq_disp[-1, :]))
# Plot all the walks
# rw.plot_walk()
print('sim time', time.time()-st)
import porespy as ps
import matplotlib.pyplot as plt
# Generate an image of spheres using the imgen class
im = ps.generators.blobs(shape=[500, 500], porosity=0.7, blobiness=1)
plt.figure(1)
plt.imshow(im)
# Chord length distributions
chords = ps.filters.apply_chords(im=im, trim_edges=False)
colored_chords = ps.filters.region_size(chords)
h = ps.metrics.chord_length_distribution(chords, bins=25)
ps.visualization.set_mpl_style()
plt.figure(2)
plt.subplot(2, 2, 1)
plt.imshow(im)
plt.subplot(2, 2, 3)
plt.imshow(chords)
plt.subplot(2, 2, 4)
plt.imshow(colored_chords, cmap=plt.cm.jet)
plt.subplot(2, 2, 2)