Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
[['1','4',0.5],
['1','5',0.5],
['1','6',0],
['2','4',0],
['2','5',0.5],
['2','6',0.5],
['3','4',0.5],
['3','5',0],
['3','6',0.5],
],[A])
s1 = Node(A, name="A")
s2 = Node(B, name="B")
s3 = Node(C, name="C")
model = BayesianNetwork("tree")
model.add_states(s1, s2, s3)
model.add_edge(s1, s2)
model.add_edge(s1, s3)
model.bake()
self.model = model
meta = []
for i in range(self.model.node_count()-1):
meta.append({
"name": chr(ord('A') + i),
"type": "categorical",
"size": 3,
"i2s": ['1', '2', '3']
})
meta.append({
"name": "C",
Wet = ConditionalProbabilityTable(
[['F','F','T',0.01],
['F','F','F',0.99],
['F','T','T',0.8],
['F','T','F',0.2],
['T','F','T',0.9],
['T','F','F',0.1],
['T','T','T',0.99],
['T','T','F',0.01],
],[Sprinkler,Rain])
s1 = Node(Rain, name="Rain")
s2 = Node(Sprinkler, name="Sprinkler")
s3 = Node(Wet, name="Wet")
model = BayesianNetwork("Simple fully connected")
model.add_states(s1, s2, s3)
model.add_edge(s1, s2)
model.add_edge(s1, s3)
model.add_edge(s2, s3)
model.bake()
self.model = model
meta = []
for i in range(self.model.node_count()):
meta.append({
"name": None,
"type": "categorical",
"size": 2,
"i2s": ['T', 'F']
})
meta[0]['name'] = 'Rain'
[['1','1',0.5],
['1','2',0.5],
['1','3',0],
['2','1',0],
['2','2',0.5],
['2','3',0.5],
['3','1',0.5],
['3','2',0],
['3','3',0.5],
],[B])
s1 = Node(A, name="A")
s2 = Node(B, name="B")
s3 = Node(C, name="C")
model = BayesianNetwork("ChainSampler")
model.add_states(s1, s2, s3)
model.add_edge(s1, s2)
model.add_edge(s2, s3)
model.bake()
self.model = model
meta = []
for i in range(self.model.node_count()):
meta.append({
"name": chr(ord('A') + i),
"type": "categorical",
"size": 3,
"i2s": ['1', '2', '3']
})
self.meta = meta
['F','T',0.2],
['F','F',0.8],
],[Cancer])
Dyspnoea = ConditionalProbabilityTable(
[['T','T',0.65],
['T','F',0.35],
['F','T',0.3],
['F','F',0.7],
],[Cancer])
s1 = Node(Pollution, name="Pollution")
s2 = Node(Smoker, name="Smoker")
s3 = Node(Cancer, name="Cancer")
s4 = Node(XRay, name="XRay")
s5 = Node(Dyspnoea, name="Dyspnoea")
model = BayesianNetwork("Lung Cancer")
model.add_states(s1, s2, s3, s4, s5)
model.add_edge(s1, s3)
model.add_edge(s2, s3)
model.add_edge(s3, s4)
model.add_edge(s3, s5)
model.bake()
self.model = model
meta = []
name_mapper = ["Pollution", "Smoker", "Cancer", "XRay", "Dyspnoea"]
for i in range(self.model.node_count()):
meta.append({
"name": name_mapper[i],
"type": "categorical",
"size": 2,
"i2s": ['T', 'F']