Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def _makeSlider(self, value=0):
npts = 5
w = QtGui.QSlider(0x01)
w.setMinimum(0)
w.setMaximum(npts-1)
w.setSingleStep(1)
w.setPageStep(1)
w.setTickInterval(10)
w.setTickPosition(QtGui.QSlider.TicksBelow)
w.setValue(value)
return w
def main():
app = QtGui.QApplication([])
# flowchart and window
nodes = makeNodeList()
win, fc = makeFlowchartWithPlotWindow(nodes)
win.show()
# feed in data
data = makeData()
fc.setInput(dataIn=data)
return app.exec_()
def _makeSlider(self, value=0):
npts = 5
w = QtGui.QSlider(0x01)
w.setMinimum(0)
w.setMaximum(npts-1)
w.setSingleStep(1)
w.setPageStep(1)
w.setTickInterval(10)
w.setTickPosition(QtGui.QSlider.TicksBelow)
w.setValue(value)
return w
)
data.validate()
x = np.arange(11) - 5.
y = np.linspace(0, 10, 51)
xx, yy = np.meshgrid(x, y, indexing='ij')
zz = np.sin(yy) + xx
data2 = MeshgridDataDict(
reps=dict(values=xx),
y=dict(values=yy),
z=dict(values=zz, axes=['reps', 'y'])
)
data2.validate()
# make app and gui, fc
app = QtGui.QApplication([])
win, fc = flowchartAutoPlot([
('sub', SubtractAverage)
])
win.show()
# feed in data
fc.setInput(dataIn=data)
fc.setInput(dataIn=data2)
return app.exec_()
def processData(self):
_data = self.getInputData()
data = DataDict()
for k in self.traceNames:
data[k] = _data.get(k)
if self.xaxisName in _data:
data[self.xaxisName] = _data[self.xaxisName]
return data
def two_compatible_noisy_2d_sets(nx=10, ny=10):
x = np.linspace(0, 10, nx)
y = np.arange(ny)
xx, yy = np.meshgrid(x, y, indexing='ij')
dd = np.cos(xx) + (-0.05 + 0.1 * np.random.rand(*yy.shape))
dd2 = np.sin(xx) + (-0.5 + 1 * np.random.rand(*yy.shape))
d = DataDict(
x = dict(values=xx.reshape(-1)),
y = dict(values=yy.reshape(-1)),
cos_data = dict(values=dd.reshape(-1), axes=['x', 'y']),
sin_data = dict(values=dd2.reshape(-1), axes=['x', 'y']),
)
return d
def test_shape_guessing_simple():
"""test whether we can infer shapes correctly"""
a = np.linspace(0, 1, 11)
b = np.arange(5)
aa, bb = np.meshgrid(a, b, indexing='ij')
zz = aa * bb
dd = DataDict(
a=dict(values=aa.reshape(-1)),
b=dict(values=bb.reshape(-1)),
z=dict(values=zz.reshape(-1), axes=['a', 'b'])
)
assert guess_shape_from_datadict(dd) == dict(z=(['a', 'b'], (11, 5)))
dd['a']['values'][5] = None
dd['a']['values'][10] = np.nan
assert guess_shape_from_datadict(dd) == dict(z=(['a', 'b'], (11, 5)))
# non-uniform
# noise on the coordinates should not result in failing as long as it
# keeps monotonicity in the sweep axes
dd['a']['values'] = (aa + np.random.rand(a.size).reshape(a.size, 1)
* 1e-3).reshape(-1)
def three_compatible_3d_sets(nx=3, ny=3, nz=3, rand_factor=1):
x = np.linspace(0, 10, nx)
y = np.linspace(-5, 5, ny)
z = np.arange(nz)
xx, yy, zz = np.meshgrid(x, y, z, indexing='ij')
dd = np.cos(xx) * np.sin(yy) + rand_factor * np.random.rand(*zz.shape)
dd2 = np.sin(xx) * np.cos(yy) + rand_factor * np.random.rand(*zz.shape)
dd3 = np.cos(xx)**2 * np.cos(yy)**2 + rand_factor * np.random.rand(*zz.shape)
d = DataDict(
x = dict(values=xx.reshape(-1), unit='mA'),
y = dict(values=yy.reshape(-1), unit='uC'),
z = dict(values=zz.reshape(-1), unit='nF'),
data = dict(values=dd.reshape(-1), axes=['x', 'y', 'z'], unit='kW'),
more_data = dict(values=dd2.reshape(-1), axes=['x', 'y', 'z'], unit='MV'),
different_data = dict(values=dd3.reshape(-1), axes=['x', 'y', 'z'], unit='TS')
)
return d
def test_basic_storage_and_retrieval():
x = np.arange(3)
y = np.repeat(np.linspace(0, 1, 5).reshape(1, -1), 3, 0)
z = np.arange(y.size).reshape(y.shape)
data = dd.DataDict(
x=dict(values=x, unit='A',
__info__='careful!',
__moreinfo__='more words in here'),
y=dict(values=y, unit='B'),
z=dict(values=z, axes=['x', 'y'], unit='C'),
__desc__='some description',
)
assert data.validate()
dds.datadict_to_hdf5(data, FN, append_mode=dds.AppendMode.none)
datafromfile = dds.datadict_from_hdf5(FN)
# hdf5 saving added a few extra metas that we need to ignore when
# comparing
datafromfile = _clean_from_file(datafromfile)
assert(data == datafromfile)
def one_2d_set(nx=10, ny=10):
x = np.linspace(0, 10, nx)
y = np.arange(ny)
xx, yy = np.meshgrid(x, y, indexing='ij')
dd = np.cos(xx) + (-0.05 + 0.1 * np.random.rand(*yy.shape))
d = DataDict(
x=dict(values=xx.reshape(-1)),
y=dict(values=yy.reshape(-1)),
cos_data=dict(values=dd.reshape(-1), axes=['x', 'y']),
)
d.validate()
return d