How to use the pgl.utils.logger.log function in pgl

To help you get started, we’ve selected a few pgl examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github PaddlePaddle / PGL / examples / line / multi_class.py View on Github external
def main(args):
    """The main funciton for nodes classify task.
    """
    set_seed(args.seed)
    log.info(args)
    dataset = FlickrDataset(args.data_path, train_percentage=args.percent)

    train_steps = (len(dataset.train_index) // args.batch_size) * args.epochs
    place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
    train_prog = fluid.Program()
    test_prog = fluid.Program()
    startup_prog = fluid.Program()

    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            train_model = node_classify_model(
                dataset.graph,
                dataset.num_groups,
                embed_dim=args.embed_dim,
                name='train')
github PaddlePaddle / PGL / examples / distribute_deepwalk / cluster_train.py View on Github external
def test(args):
    graph = build_graph(args.num_nodes, args.edge_path)
    gen_func = build_gen_func(args, graph)

    start = time.time()
    num = 10
    for idx, _ in enumerate(gen_func()):
        if idx % num == num - 1:
            log.info("%s" % (1.0 * (time.time() - start) / num))
            start = time.time()
github PaddlePaddle / PGL / examples / gcn / train.py View on Github external
feed_dict["node_index"] = np.array(test_index, dtype="int64")
    feed_dict["node_label"] = np.array(test_label, dtype="int64")
    test_loss, test_acc = exe.run(test_program,
                                  feed=feed_dict,
                                  fetch_list=[loss, acc],
                                  return_numpy=True)
    log.info("Accuracy: %f" % test_acc)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    parser.add_argument(
        "--dataset", type=str, default="cora", help="dataset (cora, pubmed)")
    parser.add_argument("--use_cuda", action='store_true', help="use_cuda")
    args = parser.parse_args()
    log.info(args)
    main(args)
github PaddlePaddle / PGL / examples / static_gcn / train.py View on Github external
train_loss = exe.run(train_program,
                             feed={},
                             fetch_list=[train_loss_t],
                             return_numpy=True)
        train_loss = train_loss[0]

        if epoch >= 3:
            time_per_epoch = 1.0 * (time.time() - t0)
            dur.append(time_per_epoch)

        val_loss, val_acc = exe.run(val_program,
                                    feed={},
                                    fetch_list=[val_loss_t, val_acc_t],
                                    return_numpy=True)

        log.info("Epoch %d " % epoch + "(%.5lf sec) " % np.mean(
            dur) + "Train Loss: %f " % train_loss + "Val Loss: %f " % val_loss
                 + "Val Acc: %f " % val_acc)

    test_loss, test_acc = exe.run(test_program,
                                  feed={},
                                  fetch_list=[test_loss_t, test_acc_t],
                                  return_numpy=True)
    log.info("Accuracy: %f" % test_acc)
github PaddlePaddle / PGL / examples / static_gat / train.py View on Github external
dur.append(time_per_epoch)

        val_loss, val_acc = exe.run(val_program,
                                    feed={},
                                    fetch_list=[val_loss_t, val_acc_t],
                                    return_numpy=True)

        log.info("Epoch %d " % epoch + "(%.5lf sec) " % np.mean(
            dur) + "Train Loss: %f " % train_loss + "Val Loss: %f " % val_loss
                 + "Val Acc: %f " % val_acc)

    test_loss, test_acc = exe.run(test_program,
                                  feed={},
                                  fetch_list=[test_loss_t, test_acc_t],
                                  return_numpy=True)
    log.info("Accuracy: %f" % test_acc)
github PaddlePaddle / PGL / examples / graphsage / train.py View on Github external
def main(args):
    data = load_data(args.normalize, args.symmetry)
    log.info("preprocess finish")
    log.info("Train Examples: %s" % len(data["train_index"]))
    log.info("Val Examples: %s" % len(data["val_index"]))
    log.info("Test Examples: %s" % len(data["test_index"]))
    log.info("Num nodes %s" % data["graph"].num_nodes)
    log.info("Num edges %s" % data["graph"].num_edges)
    log.info("Average Degree %s" % np.mean(data["graph"].indegree()))

    place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
    train_program = fluid.Program()
    startup_program = fluid.Program()
    samples = []
    if args.samples_1 > 0:
        samples.append(args.samples_1)
    if args.samples_2 > 0:
        samples.append(args.samples_2)

    with fluid.program_guard(train_program, startup_program):
        feature, feature_init = paddle_helper.constant(
            "feat",
            dtype=data['feature'].dtype,
            value=data['feature'],
            hide_batch_size=False)
github PaddlePaddle / PGL / examples / distribute_deepwalk / cluster_train.py View on Github external
def train(args):
    import logging
    log.setLevel(logging.DEBUG)
    log.info("start")

    worker_num = int(os.getenv("PADDLE_TRAINERS_NUM", "0"))
    num_devices = int(os.getenv("CPU_NUM", 10))

    model = DeepwalkModel(args.num_nodes, args.hidden_size, args.neg_num,
                          args.is_sparse, args.is_distributed, 1.)
    pyreader = model.pyreader
    loss = model.forward()

    # init fleet
    init_role()

    train_steps = math.ceil(1. * args.num_nodes * args.epoch /
                            args.batch_size / num_devices / worker_num)
    log.info("Train step: %s" % train_steps)
github PaddlePaddle / PGL / examples / static_gcn / train.py View on Github external
dur.append(time_per_epoch)

        val_loss, val_acc = exe.run(val_program,
                                    feed={},
                                    fetch_list=[val_loss_t, val_acc_t],
                                    return_numpy=True)

        log.info("Epoch %d " % epoch + "(%.5lf sec) " % np.mean(
            dur) + "Train Loss: %f " % train_loss + "Val Loss: %f " % val_loss
                 + "Val Acc: %f " % val_acc)

    test_loss, test_acc = exe.run(test_program,
                                  feed={},
                                  fetch_list=[test_loss_t, test_acc_t],
                                  return_numpy=True)
    log.info("Accuracy: %f" % test_acc)
github PaddlePaddle / PGL / pgl / sample.py View on Github external
start_nodes = nodes
    nodes = list(start_nodes)
    eids, edges = [], []
    nodes_set = set(nodes)
    layer_nodes, layer_eids, layer_edges = [], [], []
    ignore_edge_set = set([edge_hash(src, dst) for src, dst in ignore_edges])

    for layer_idx in reversed(range(num_layers)):
        if len(start_nodes) == 0:
            layer_nodes = [nodes] + layer_nodes
            layer_eids = [eids] + layer_eids
            layer_edges = [edges] + layer_edges
            continue
        batch_pred_nodes, batch_pred_eids = graph.sample_predecessor(
            start_nodes, samples[layer_idx], return_eids=True)
        log.debug("sample_predecessor time: %s" % (time.time() - start))
        start = time.time()
        last_nodes_set = nodes_set

        nodes, eids = copy.copy(nodes), copy.copy(eids)
        edges = copy.copy(edges)
        nodes_set, eids_set = set(nodes), set(eids)
        for srcs, dst, pred_eids in zip(batch_pred_nodes, start_nodes,
                                        batch_pred_eids):
            for src, eid in zip(srcs, pred_eids):
                if edge_hash(src, dst) in ignore_edge_set:
                    continue
                if eid not in eids_set:
                    eids.append(eid)
                    edges.append([src, dst])
                    eids_set.add(eid)
                if src not in nodes_set:
github PaddlePaddle / PGL / examples / gat / train.py View on Github external
feed_dict["node_index"] = np.array(test_index, dtype="int64")
    feed_dict["node_label"] = np.array(test_label, dtype="int64")
    test_loss, test_acc = exe.run(test_program,
                                  feed=feed_dict,
                                  fetch_list=[loss, acc],
                                  return_numpy=True)
    log.info("Accuracy: %f" % test_acc)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GAT')
    parser.add_argument(
        "--dataset", type=str, default="cora", help="dataset (cora, pubmed)")
    parser.add_argument("--use_cuda", action='store_true', help="use_cuda")
    args = parser.parse_args()
    log.info(args)
    main(args)