How to use the pastas.set_log_level function in pastas

To help you get started, we’ve selected a few pastas examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github pastas / pastas / tests / test_project.py View on Github external
from pandas import read_csv
import pastas as ps

ps.set_log_level("ERROR")


def test_create_project():
    pr = ps.Project(name="test")
    return pr


def test_project_add_oseries():
    pr = test_create_project()
    obs = read_csv("tests/data/obs.csv", index_col=0, parse_dates=True,
                   squeeze=True)
    pr.add_oseries(obs, name="heads", metadata={"x": 0.0, "y": 0})
    return pr


def test_project_add_stresses():
github pastas / pastas / examples / example.py View on Github external
"""
This test file is meant for developing purposes. Providing an easy method to
test the functioning of PASTAS during development.

"""
import pandas as pd

import pastas as ps

ps.set_log_level("ERROR")

# read observations and create the time series model
obs = pd.read_csv("data/head_nb1.csv", index_col=0, parse_dates=True,
                  squeeze=True)

# Create the time series model
ml = ps.Model(obs, name="head")

# read weather data
rain = pd.read_csv("data/rain_nb1.csv", index_col=0, parse_dates=True,
                   squeeze=True)
evap = pd.read_csv("data/evap_nb1.csv", index_col=0, parse_dates=True,
                   squeeze=True)

# Create stress
sm = ps.RechargeModel(prec=rain, evap=evap, rfunc=ps.Exponential,
github pastas / pastas / examples / example_logger.py View on Github external
# -*- coding: utf-8 -*-
"""
This example is meant to show the logger methods of pastas

"""

import pastas as ps

# using the default logger, we will see some infomration in the console:
obs = ps.read_dino('data/B58C0698001_1.csv')

# when we set the level to WARNING we do not see any output anymore
ps.set_log_level('WARNING')
# which is just a wrapper around
ps.utils.set_console_handler(ps.logger, level='WARNING')
obs = ps.read_dino('data/B58C0698001_1.csv')

# when we also want log-information saved to file, we add file-handlers
ps.utils.add_file_handlers(ps.logger)
obs = ps.read_dino('data/B58C0698001_1.csv')

# to get the default logger back we initialize it again
ps.utils.initialize_logger(ps.logger)
github pastas / pastas / examples / example_tmin.py View on Github external
"""
This test file is meant for developing purposes, providing an easy method to
test the functioning of Pastas recharge module during development.

Author: R.A. Collenteur, University of Graz.

"""
import pastas as ps
import pandas as pd

ps.set_log_level("ERROR")

# read observations
obs = ps.read_dino('data/B58C0698001_1.csv')

# Create the time series model
ml = ps.Model(obs, name="groundwater head")

# read weather data
rain = ps.read_knmi('data/neerslaggeg_HEIBLOEM-L_967-2.txt', variables='RD')
rain.multiply(1000)
evap = ps.read_knmi('data/etmgeg_380.txt', variables='EV24')
evap.multiply(1000)

# Create stress
sm = ps.RechargeModel(prec=rain, evap=evap, rfunc=ps.Exponential,
                      recharge="Linear", name='recharge')
github pastas / pastas / examples / example_uncertainty.py View on Github external
import numpy as np
import pandas as pd

import pastas as ps

ps.set_log_level("ERROR")

# read observations and create the time series model
obs = pd.read_csv("data/head_nb1.csv", index_col=0, parse_dates=True,
                  squeeze=True)
ml = ps.Model(obs, name="groundwater head")

# read weather data and create stressmodel
rain = pd.read_csv("data/rain_nb1.csv", index_col=0, parse_dates=True,
                   squeeze=True)
evap = pd.read_csv("data/evap_nb1.csv", index_col=0, parse_dates=True,
                   squeeze=True)
sm = ps.RechargeModel(prec=rain, evap=evap, rfunc=ps.Exponential,
                      recharge="Linear", name='recharge')
ml.add_stressmodel(sm)

# Solve
github pastas / pastas / examples / example_recharge.py View on Github external
"""
This test file is meant for developing purposes, providing an easy method to
test the functioning of Pastas recharge module during development.

Author: R.A. Collenteur, University of Graz.

"""
import pandas as pd

import pastas as ps

ps.set_log_level("ERROR")

# read observations and create the time series model
obs = pd.read_csv("data/head_nb1.csv", index_col=0, parse_dates=True,
                  squeeze=True)

# Create the time series model
ml = ps.Model(obs, name="head")

# read weather data
rain = pd.read_csv("data/rain_nb1.csv", index_col=0, parse_dates=True,
                   squeeze=True)
evap = pd.read_csv("data/evap_nb1.csv", index_col=0, parse_dates=True,
                   squeeze=True)

# Create stress
sm = ps.RechargeModel(prec=rain, evap=evap, rfunc=ps.Exponential,