Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_starmap(self):
items = [(1, 2), (3, 4), (5, 6)]
pfalse = parmap.starmap(_identity, items, 5, 6, pm_parallel=False)
ptrue = parmap.starmap(_identity, items, 5, 6, pm_parallel=True)
self.assertEqual(pfalse, ptrue)
def test_starmap(self):
items = [(1, 2), (3, 4), (5, 6)]
pfalse = parmap.starmap(_identity, items, 5, 6, pm_parallel=False)
ptrue = parmap.starmap(_identity, items, 5, 6, pm_parallel=True)
self.assertEqual(pfalse, ptrue)
"""
self.ncols = self.satellite_gdal.RasterXSize / 2
self.nrows = self.satellite_gdal.RasterYSize / 2
self.length_df = self.nrows * self.ncols
print 'Columns, rows', self.ncols, self.nrows
cols_grid, rows_grid = np.meshgrid(
range(0, self.ncols),
range(0, self.nrows))
self.cols_grid = cols_grid.flatten()
self.rows_grid = rows_grid.flatten()
print 'Checking the meshgrid procedure works'
# getting a series of lat lon points for each pixel
self.geotransform = self.satellite_gdal.GetGeoTransform()
print 'Getting locations'
self.location_series = np.array(parmap.starmap(
pixel_to_coordinates,
zip(self.cols_grid, self.rows_grid),
self.geotransform,
processes = self.processes))
print 'Converting to Points'
pool = Pool(self.processes)
self.location_series = pool.map(
point_wrapper,
self.location_series)
Have to shuffle here to ensure that the last ten percent isn't just
the southern most rows of information
"""
# Getting the sum of urban pixels for each patch
self.pop_array = self.df_image['pop_density'].fillna(0)
self.pop_array = np.array(
self.pop_array).reshape((self.nrows, self.ncols))
print 'extract patches'
self.image_slicer(self.pop_array)
print 'get locations for individual frames'
pool = Pool(self.processes)
cols_grid = pool.map(adder, self.indices[:,0])
rows_grid = pool.map(adder, self.indices[:,1])
print 'Max of cols grid after slicing:', max(cols_grid)
print 'Max of rows grid after slicing:', max(rows_grid)
self.frame_location_series = parmap.starmap(
pixel_to_coordinates,
zip(cols_grid, rows_grid), self.geotransform,
processes=self.processes)
print 'converting locations to Points'
self.frame_location_series = \
pool.map(Point, self.frame_location_series)
pop_count = np.array([np.mean(patch) for patch in self.patches])
self.df_sample = pd.DataFrame(pop_count, columns=['pop_ave'])
# Getting the locations
self.df_sample['location'] = self.frame_location_series
# Creating sample weights
seed =1975
self.pop_mean_sample = self.df_sample.sample(
frac=self.sample_rate,
replace=True,
weights='pop_ave',