Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
try:
from colorama import Fore, Style, init
except ImportError:
pass
from ethereum import tester as t
from pyconsensus import Oracle
ROOT = os.path.join(os.path.dirname(os.path.realpath(__file__)),
os.pardir, os.pardir, "consensus")
np.set_printoptions(linewidth=225,
suppress=True,
formatter={"float": "{: 0.6f}".format})
pd.set_option("display.max_rows", 25)
pd.set_option("display.width", 1000)
pd.set_option('display.float_format', lambda x: '%.8f' % x)
# max_iterations: number of blocks required to complete PCA
verbose = False
max_iterations = 5
tolerance = 0.05
variance_threshold = 0.85
max_components = 5
init()
YES = 2.0
NO = 1.0
BAD = 1.5
NA = 0.0
def BR(string): # bright reddef personal_display_settings():
"""
Pandas Doc
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.set_option.html
NumPy Doc
-
"""
from pandas import set_option
set_option('display.max_rows', 500)
set_option('display.max_columns', 500)
set_option('display.width', 2000)
set_option('display.max_colwidth', 1000)
from numpy import set_printoptions
set_printoptions(suppress=True)def getHotHouse(allList, top):
df = pd.DataFrame(allList)
# 根据首付降序排列
pd.set_option('display.max_rows', 1000)
pd.set_option('display.max_columns', 1000)
pd.set_option('display.width', 1000)
pd.set_option('max_colwidth', 1000)
df["rank"] = df['price_f'].rank(ascending=1, method='dense')
# 选出排名最低的10个
df_rank = df[df["rank"] <= top]
return df_rankimport ctypes
import struct
import zipfile
import datetime
import requests
import const as ct
import numpy as np
import pandas as pd
from base.clog import getLogger
from base.cdate import get_day_nday_ago
from datetime import datetime, timedelta
from common import get_security_exchange_name
from datamanager.tick_models import TickTradeDetail, TickDetailModel
logger = getLogger(__name__)
pd.options.mode.chained_assignment = None #default='warn'
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
def unsigned2signed(value):
return ctypes.c_int32(value).value
def signed2unsigned(value, b = 32):
if 32 == b:
return ctypes.c_uint32(value).value
elif 8 == b:
return ctypes.c_uint8(value).value
elif 16 == b:
return ctypes.c_uint16(value).value
def int_overflow(val):
maxint = 2147483647
if not -maxint - 1 <= val <= maxint:import pandas as pd
import os
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
dirname = os.path.dirname(__file__)
input_file = os.path.join(dirname, 'data/2017-18_pbp.csv')
output_file = os.path.join(dirname, 'data/unique_pbp.csv')
play_by_play = pd.read_csv(input_file)
play_by_play_for_analysis = play_by_play[['EVENTMSGTYPE', 'EVENTMSGACTIONTYPE', 'HOMEDESCRIPTION', 'NEUTRALDESCRIPTION',
'VISITORDESCRIPTION','PLAYER1_ID', 'PLAYER1_NAME', 'PLAYER1_TEAM_ID',
'PLAYER1_TEAM_NICKNAME', 'PLAYER2_ID', 'PLAYER2_NAME', 'PLAYER2_TEAM_ID',
'PLAYER2_TEAM_NICKNAME', 'PLAYER3_ID', 'PLAYER3_NAME', 'PLAYER3_TEAM_ID',
'PLAYER3_TEAM_NICKNAME']]
play_by_play_for_analysis = play_by_play_for_analysis.fillna('')
play_by_play_for_analysis['DESCRIPTION'] = play_by_play_for_analysis['HOMEDESCRIPTION'] + ' ' + \
play_by_play_for_analysis['NEUTRALDESCRIPTION'] + ' ' + \return (text[:37] + '...') if isinstance(text, six.string_types) and len(text) > 40 else text
# Truncate text explicitly here because we will set display.max_colwidth to -1.
# This applies to images to but images will be overriden with "_show_img()" later.
formatters = {x: _truncate_text for x in df.columns if df[x].dtype == np.object}
if not args['no_show_image'] and img_cols:
formatters.update({x + '_image': _show_img for x in img_cols})
# Set display.max_colwidth to -1 so we can display images.
old_width = pd.get_option('display.max_colwidth')
pd.set_option('display.max_colwidth', -1)
try:
IPython.display.display(IPython.display.HTML(
df.to_html(formatters=formatters, escape=False, index=False)))
finally:
pd.set_option('display.max_colwidth', old_width)def main():
data_dir_path = './data/ml-latest-small'
poster_dir_path = './data/posters'
output_dir_path = './data/models'
np.set_printoptions(threshold=np.nan)
pd.set_option('display.height', 1000)
pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
df = pd.read_csv(data_dir_path + '/ratings.csv', sep=',')
df_id = pd.read_csv(data_dir_path + '/links.csv', sep=',')
df_movie_names = pd.read_csv(data_dir_path + '/movies.csv', sep=',')
df = pd.merge(pd.merge(df, df_id, on='movieId'), df_movie_names, on='movieId')
print(df.head())
data_file = data_dir_path + '/imdb_id_to_image_dict.data'
if not os.path.exists(data_file):
imdb_id_to_image_dict = dict()
for poster_file in glob(poster_dir_path + '/*.jpg'): # debug here
print('Loading img at {}'.format(poster_file))
img = kimage.load_img(poster_file, target_size=(224, 224))global load_bar, colored
conf = config_mod.get_config(config_file)
if readline_present:
try:
readline.read_history_file(history_file)
readline.set_history_length(conf.getint('easyaccess', 'histcache'))
except:
print(colored('readline might have problems accessing history', 'red'))
args = eaparser.get_args(config_file) # Reads command line arguments
# PANDAS DISPLAY SET UP
pd.set_option('display.max_rows', conf.getint('display', 'max_rows'))
pd.set_option('display.width', conf.getint('display', 'width'))
pd.set_option('display.max_columns', conf.getint('display', 'max_columns'))
pd.set_option('display.max_colwidth', conf.getint('display', 'max_colwidth'))
load_bar = conf.getboolean('display', 'loading_bar')
if args.quiet:
conf.set('display', 'loading_bar', 'no')
if args.db is not None:
db = args.db
if db[:3] == 'db-':
db = db[3:]
else:
db = conf.get('easyaccess', 'database')
if args.user is not None:
print('Bypassing .desservices file with user : %s' % args.user)
if args.password is None:
print('Must include password')import math
from datetime import datetime
import numpy as np
import pandas as pd
pd.set_option('display.max_colwidth', -1)
pd.set_option('display.max_columns', 100)
import hashlib
from ddos_dissector.exceptions.UnsupportedFileTypeError import UnsupportedFileTypeError
from ddos_dissector.portnumber2name import portnumber2name
from ddos_dissector.protocolnumber2name import protocolnumber2name
from ddos_dissector.tcpflagletters2names import tcpflagletters2names
from datetime import datetime
def analyze_dataframe(df, dst_ip, file_type):
"""
Analyze a dataframe, and return the fingerprints
:param df: The Pandas dataframe
:param dst_ip: The destination IP (if entered) or False
:param file_type: The file type string
:return: The fingerprints