How to use the osmnx.graph_from_point function in osmnx

To help you get started, we’ve selected a few osmnx examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github gboeing / osmnx / tests / test_osmnx.py View on Github external
def test_get_network_methods():
    from shapely import wkt

    # graph from bounding box
    north, south, east, west = 37.79, 37.78, -122.41, -122.43
    G1 = ox.graph_from_bbox(north, south, east, west, network_type='drive_service')
    G1 = ox.graph_from_bbox(north, south, east, west, network_type='drive_service', truncate_by_edge=True)

    # graph from point
    location_point = (37.791427, -122.410018)
    bbox = ox.bbox_from_point(location_point, project_utm=True)
    G2 = ox.graph_from_point(location_point, distance=750, distance_type='bbox', network_type='drive')
    G3 = ox.graph_from_point(location_point, distance=500, distance_type='network')

    # graph from address
    G4 = ox.graph_from_address(address='350 5th Ave, New York, NY', distance=1000, distance_type='network',
                               network_type='bike')

    # graph from list of places
    places = ['Los Altos, California, USA', {'city': 'Los Altos Hills', 'state': 'California'}, 'Loyola, California']
    G5 = ox.graph_from_place(places, network_type='all', clean_periphery=False)

    # graph from polygon
    polygon = wkt.loads(
        'POLYGON ((-122.418083 37.754154, -122.418082 37.766028, -122.410909 37.766028, -122.410908 37.754154, -122.418083 37.754154))')
    G6 = ox.graph_from_polygon(polygon, network_type='walk')

    # test custom query filter
    filtr = ('["area"!~"yes"]'
github gboeing / osmnx / tests / test_osmnx.py View on Github external
# graph from list of places
    places = ['Los Altos, California, USA', {'city': 'Los Altos Hills', 'state': 'California'}, 'Loyola, California']
    G5 = ox.graph_from_place(places, network_type='all', clean_periphery=False)

    # graph from polygon
    polygon = wkt.loads(
        'POLYGON ((-122.418083 37.754154, -122.418082 37.766028, -122.410909 37.766028, -122.410908 37.754154, -122.418083 37.754154))')
    G6 = ox.graph_from_polygon(polygon, network_type='walk')

    # test custom query filter
    filtr = ('["area"!~"yes"]'
             '["highway"!~"motor|proposed|construction|abandoned|platform|raceway"]'
             '["foot"!~"no"]'
             '["service"!~"private"]'
             '["access"!~"private"]')
    G = ox.graph_from_point(location_point, network_type='walk', custom_filter=filtr)
github ppintosilva / anprx / tests / test_core.py View on Github external
def get_network(distance = 1000, center = (54.97351, -1.62545)):

    network_pickle_filename = "tests/data/test_network_USB_{}.pkl".format(distance)

    if os.path.exists(network_pickle_filename):
        network = nx.read_gpickle(path = network_pickle_filename)
    else:
        network = ox.graph_from_point(
            center_point = center,
            distance = distance, #meters
            distance_type='bbox',
            network_type="drive_service")
        nx.write_gpickle(G = network, path = network_pickle_filename)

    return network
github ppintosilva / anprx / tests / test_camera.py View on Github external
def get_network(distance = 1000, center = (54.97351, -1.62545)):

    network_pickle_filename = "tests/data/test_network_USB_{}.pkl".format(distance)

    if os.path.exists(network_pickle_filename):
        network = nx.read_gpickle(path = network_pickle_filename)
    else:
        network = ox.graph_from_point(
            center_point = center,
            distance = distance, #meters
            distance_type='bbox',
            network_type="drive_service")
        nx.write_gpickle(G = network, path = network_pickle_filename)

    return network
github gboeing / osmnx / tests / test_osmnx.py View on Github external
def test_stats():
    # create graph, add bearings, project it
    location_point = (37.791427, -122.410018)
    G = ox.graph_from_point(location_point, distance=500, distance_type='network')
    G = ox.add_edge_bearings(G)
    G_proj = ox.project_graph(G)

    # calculate stats
    stats1 = ox.basic_stats(G)
    stats2 = ox.basic_stats(G, area=1000)
    stats3 = ox.basic_stats(G_proj, area=1000, clean_intersects=True, tolerance=15, circuity_dist='euclidean')

    try:
        stats4 = ox.extended_stats(G, connectivity=True, anc=True, ecc=True, bc=True, cc=True)
    except NetworkXNotImplemented as e:
        warnings.warn("Testing coordinates results in a MultiDigraph, and extended stats are not available for it")
        warnings.warn(e.args)
github ppintosilva / anprx / anprx / cameras.py View on Github external
# but now we need center point in lat,lon
    # points = [Point(lat,lng) for lat,lng in zip(cameras['lat'], cameras['lon'])]

    lat = cameras['lat']
    lon = cameras['lon']

    center_lat = min(lat) + (max(lat) - min(lat))/2
    center_lon = min(lon) + (max(lon) - min(lon))/2

    log("Center point = {}, distance = {}"\
            .format((center_lat, center_lon), length),
        level = lg.INFO)
    checkpoint = time.time()

    G = ox.graph_from_point(
        center_point = (center_lat, center_lon),
        distance = length,
        retain_all = retain_all,
        custom_filter = osm_road_filter
    )

    log("Returned road graph in {:,.3f} sec"\
            .format(time.time() - start_time),
        level = lg.INFO)
    checkpoint = time.time()

    # Make sure that every edge has a geometry attribute
    for u, v, data in G.edges(keys=False, data=True):
        if 'geometry' not in data:
            # if it doesn't have a geometry attribute, the edge is a straight
            # line from node to node
github scikit-mobility / scikit-mobility / skmob / preprocessing / routing.py View on Github external
if index_destin == -1:
        index_destin_last = None
    else:
        index_destin_last = index_destin
    tdf1 = tdf[index_origin: index_destin_last]

    origin_coords = tuple(tdf1.iloc[index_origin][[constants.LATITUDE, constants.LONGITUDE]].values)
    destin_coords = tuple(tdf1.iloc[index_destin][[constants.LATITUDE, constants.LONGITUDE]].values)

    if G is None:
        mid_point = tuple(np.mean(np.array([origin_coords, destin_coords]), axis=0))
        # all distances from mid_point
        all_dists = pd.DataFrame(tdf1[[constants.LATITUDE, constants.LONGITUDE]]).apply(
            lambda x: distance(mid_point, tuple(x.values)).m, axis=1).values
        max_dist = 1.1 * max(all_dists)
        G = ox.graph_from_point(mid_point, distance=max_dist)

    # nodes, _ = ox.graph_to_gdfs(G)

    # closest points to origin and destination on graph
    closest_o_i = ox.utils.get_nearest_node(G, origin_coords)
    closest_d_i = ox.utils.get_nearest_node(G, destin_coords)

    # find shortest path
    shortest_route = ox.nx.shortest_path(G, closest_o_i, closest_d_i, weight='length')

    return G, shortest_route