How to use the ops.Residual function in ops

To help you get started, we’ve selected a few ops examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github zhangqianhui / Sparsely-Grouped-GAN / SG_GAN.py View on Github external
with tf.variable_scope("encode_decode") as scope:

            if reuse == True:
                scope.reuse_variables()

            conv1 = tf.nn.relu(
                instance_norm(conv2d(x, output_dim=sn, k_w=7, k_h=7, d_w=1, d_h=1, name='e_c1'), scope='e_in1'))
            conv2 = tf.nn.relu(
                instance_norm(conv2d(conv1, output_dim=sn*2, k_w=4, k_h=4, d_w=2, d_h=2, name='e_c2'), scope='e_in2'))
            conv3 = tf.nn.relu(
                instance_norm(conv2d(conv2, output_dim=sn*4, k_w=4, k_h=4, d_w=2, d_h=2, name='e_c3'), scope='e_in3'))

            r1 = Residual(conv3, residual_name='re_1')
            r2 = Residual(r1, residual_name='re_2')
            r3 = Residual(r2, residual_name='re_3')
            r4 = Residual(r3, residual_name='re_4')
            r5 = Residual(r4, residual_name='re_5')
            r6 = Residual(r5, residual_name='re_6')

            g_deconv1 = tf.nn.relu(instance_norm(de_conv(r6, output_shape=[self.batch_size,
                                                                           self.output_size/2, self.output_size/2, sn*2], name='gen_deconv1'), scope="gen_in"))
            # for 1
            g_deconv_1_1 = tf.nn.relu(instance_norm(de_conv(g_deconv1,
                        output_shape=[self.batch_size, self.output_size, self.output_size, sn], name='g_deconv_1_1'), scope='gen_in_1_1'))

            #Refined Residual Image learning
            g_deconv_1_1_x = tf.concat([g_deconv_1_1, x], axis=3)
            x_tilde1 = conv2d(g_deconv_1_1_x, output_dim=self.channel, k_w=7, k_h=7, d_h=1, d_w=1, name='gen_conv_1_2')

            # for 2
            g_deconv_2_1 = tf.nn.relu(instance_norm(de_conv(g_deconv1,
github zhangqianhui / Sparsely-Grouped-GAN / SG_GAN.py View on Github external
print sn

        with tf.variable_scope("encode_decode") as scope:

            if reuse == True:
                scope.reuse_variables()

            conv1 = tf.nn.relu(
                instance_norm(conv2d(x, output_dim=sn, k_w=7, k_h=7, d_w=1, d_h=1, name='e_c1'), scope='e_in1'))
            conv2 = tf.nn.relu(
                instance_norm(conv2d(conv1, output_dim=sn*2, k_w=4, k_h=4, d_w=2, d_h=2, name='e_c2'), scope='e_in2'))
            conv3 = tf.nn.relu(
                instance_norm(conv2d(conv2, output_dim=sn*4, k_w=4, k_h=4, d_w=2, d_h=2, name='e_c3'), scope='e_in3'))

            r1 = Residual(conv3, residual_name='re_1')
            r2 = Residual(r1, residual_name='re_2')
            r3 = Residual(r2, residual_name='re_3')
            r4 = Residual(r3, residual_name='re_4')
            r5 = Residual(r4, residual_name='re_5')
            r6 = Residual(r5, residual_name='re_6')

            g_deconv1 = tf.nn.relu(instance_norm(de_conv(r6, output_shape=[self.batch_size,
                                                                           self.output_size/2, self.output_size/2, sn*2], name='gen_deconv1'), scope="gen_in"))
            # for 1
            g_deconv_1_1 = tf.nn.relu(instance_norm(de_conv(g_deconv1,
                        output_shape=[self.batch_size, self.output_size, self.output_size, sn], name='g_deconv_1_1'), scope='gen_in_1_1'))

            #Refined Residual Image learning
            g_deconv_1_1_x = tf.concat([g_deconv_1_1, x], axis=3)
            x_tilde1 = conv2d(g_deconv_1_1_x, output_dim=self.channel, k_w=7, k_h=7, d_h=1, d_w=1, name='gen_conv_1_2')
github zhangqianhui / Exemplar-GAN-Eye-Inpainting-Tensorflow / ExemplarGAN.py View on Github external
with tf.variable_scope("encode_decode") as scope:

            if reuse == True:
                scope.reuse_variables()

            x_var = tf.concat([x_var, img_mask, x_exemplar, exemplar_mask], axis=3)

            conv1 = tf.nn.relu(
                instance_norm(conv2d(x_var, output_dim=64, k_w=7, k_h=7, d_w=1, d_h=1, name='e_c1'), scope='e_in1'))
            conv2 = tf.nn.relu(
                instance_norm(conv2d(conv1, output_dim=128, k_w=4, k_h=4, d_w=2, d_h=2, name='e_c2'), scope='e_in2'))
            conv3 = tf.nn.relu(
                instance_norm(conv2d(conv2, output_dim=256, k_w=4, k_h=4, d_w=2, d_h=2, name='e_c3'), scope='e_in3'))

            r1 = Residual(conv3, residual_name='re_1')
            r2 = Residual(r1, residual_name='re_2')
            r3 = Residual(r2, residual_name='re_3')
            r4 = Residual(r3, residual_name='re_4')
            r5 = Residual(r4, residual_name='re_5')
            r6 = Residual(r5, residual_name='re_6')

            g_deconv1 = tf.nn.relu(instance_norm(de_conv(r6, output_shape=[self.batch_size,
                                                                           self.output_size/2, self.output_size/2, 128], name='gen_deconv1'), scope="gen_in"))
            # for 1
            g_deconv_1_1 = tf.nn.relu(instance_norm(de_conv(g_deconv1,
                        output_shape=[self.batch_size, self.output_size, self.output_size, 32], name='g_deconv_1_1'), scope='gen_in_1_1'))

            g_deconv_1_1_x = tf.concat([g_deconv_1_1, x_var], axis=3)
            x_tilde1 = conv2d(g_deconv_1_1_x, output_dim=self.channel, k_w=7, k_h=7, d_h=1, d_w=1, name='gen_conv_1_2')

            return tf.nn.tanh(x_tilde1)
github zhangqianhui / Exemplar-GAN-Eye-Inpainting-Tensorflow / ExemplarGAN.py View on Github external
scope.reuse_variables()

            x_var = tf.concat([x_var, img_mask, x_exemplar, exemplar_mask], axis=3)

            conv1 = tf.nn.relu(
                instance_norm(conv2d(x_var, output_dim=64, k_w=7, k_h=7, d_w=1, d_h=1, name='e_c1'), scope='e_in1'))
            conv2 = tf.nn.relu(
                instance_norm(conv2d(conv1, output_dim=128, k_w=4, k_h=4, d_w=2, d_h=2, name='e_c2'), scope='e_in2'))
            conv3 = tf.nn.relu(
                instance_norm(conv2d(conv2, output_dim=256, k_w=4, k_h=4, d_w=2, d_h=2, name='e_c3'), scope='e_in3'))

            r1 = Residual(conv3, residual_name='re_1')
            r2 = Residual(r1, residual_name='re_2')
            r3 = Residual(r2, residual_name='re_3')
            r4 = Residual(r3, residual_name='re_4')
            r5 = Residual(r4, residual_name='re_5')
            r6 = Residual(r5, residual_name='re_6')

            g_deconv1 = tf.nn.relu(instance_norm(de_conv(r6, output_shape=[self.batch_size,
                                                                           self.output_size/2, self.output_size/2, 128], name='gen_deconv1'), scope="gen_in"))
            # for 1
            g_deconv_1_1 = tf.nn.relu(instance_norm(de_conv(g_deconv1,
                        output_shape=[self.batch_size, self.output_size, self.output_size, 32], name='g_deconv_1_1'), scope='gen_in_1_1'))

            g_deconv_1_1_x = tf.concat([g_deconv_1_1, x_var], axis=3)
            x_tilde1 = conv2d(g_deconv_1_1_x, output_dim=self.channel, k_w=7, k_h=7, d_h=1, d_w=1, name='gen_conv_1_2')

            return tf.nn.tanh(x_tilde1)
github zhangqianhui / Exemplar-GAN-Eye-Inpainting-Tensorflow / ExemplarGAN.py View on Github external
x_var = tf.concat([x_var, img_mask, x_exemplar, exemplar_mask], axis=3)

            conv1 = tf.nn.relu(
                instance_norm(conv2d(x_var, output_dim=64, k_w=7, k_h=7, d_w=1, d_h=1, name='e_c1'), scope='e_in1'))
            conv2 = tf.nn.relu(
                instance_norm(conv2d(conv1, output_dim=128, k_w=4, k_h=4, d_w=2, d_h=2, name='e_c2'), scope='e_in2'))
            conv3 = tf.nn.relu(
                instance_norm(conv2d(conv2, output_dim=256, k_w=4, k_h=4, d_w=2, d_h=2, name='e_c3'), scope='e_in3'))

            r1 = Residual(conv3, residual_name='re_1')
            r2 = Residual(r1, residual_name='re_2')
            r3 = Residual(r2, residual_name='re_3')
            r4 = Residual(r3, residual_name='re_4')
            r5 = Residual(r4, residual_name='re_5')
            r6 = Residual(r5, residual_name='re_6')

            g_deconv1 = tf.nn.relu(instance_norm(de_conv(r6, output_shape=[self.batch_size,
                                                                           self.output_size/2, self.output_size/2, 128], name='gen_deconv1'), scope="gen_in"))
            # for 1
            g_deconv_1_1 = tf.nn.relu(instance_norm(de_conv(g_deconv1,
                        output_shape=[self.batch_size, self.output_size, self.output_size, 32], name='g_deconv_1_1'), scope='gen_in_1_1'))

            g_deconv_1_1_x = tf.concat([g_deconv_1_1, x_var], axis=3)
            x_tilde1 = conv2d(g_deconv_1_1_x, output_dim=self.channel, k_w=7, k_h=7, d_h=1, d_w=1, name='gen_conv_1_2')

            return tf.nn.tanh(x_tilde1)
github zhangqianhui / Exemplar-GAN-Eye-Inpainting-Tensorflow / ExemplarGAN.py View on Github external
with tf.variable_scope("encode_decode") as scope:

            if reuse == True:
                scope.reuse_variables()

            x_var = tf.concat([x_var, img_mask, x_exemplar, exemplar_mask], axis=3)

            conv1 = tf.nn.relu(
                instance_norm(conv2d(x_var, output_dim=64, k_w=7, k_h=7, d_w=1, d_h=1, name='e_c1'), scope='e_in1'))
            conv2 = tf.nn.relu(
                instance_norm(conv2d(conv1, output_dim=128, k_w=4, k_h=4, d_w=2, d_h=2, name='e_c2'), scope='e_in2'))
            conv3 = tf.nn.relu(
                instance_norm(conv2d(conv2, output_dim=256, k_w=4, k_h=4, d_w=2, d_h=2, name='e_c3'), scope='e_in3'))

            r1 = Residual(conv3, residual_name='re_1')
            r2 = Residual(r1, residual_name='re_2')
            r3 = Residual(r2, residual_name='re_3')
            r4 = Residual(r3, residual_name='re_4')
            r5 = Residual(r4, residual_name='re_5')
            r6 = Residual(r5, residual_name='re_6')

            g_deconv1 = tf.nn.relu(instance_norm(de_conv(r6, output_shape=[self.batch_size,
                                                                           self.output_size/2, self.output_size/2, 128], name='gen_deconv1'), scope="gen_in"))
            # for 1
            g_deconv_1_1 = tf.nn.relu(instance_norm(de_conv(g_deconv1,
                        output_shape=[self.batch_size, self.output_size, self.output_size, 32], name='g_deconv_1_1'), scope='gen_in_1_1'))

            g_deconv_1_1_x = tf.concat([g_deconv_1_1, x_var], axis=3)
            x_tilde1 = conv2d(g_deconv_1_1_x, output_dim=self.channel, k_w=7, k_h=7, d_h=1, d_w=1, name='gen_conv_1_2')

            return tf.nn.tanh(x_tilde1)
github zhangqianhui / Sparsely-Grouped-GAN / SG_GAN.py View on Github external
if reuse == True:
                scope.reuse_variables()

            conv1 = tf.nn.relu(
                instance_norm(conv2d(x, output_dim=sn, k_w=7, k_h=7, d_w=1, d_h=1, name='e_c1'), scope='e_in1'))
            conv2 = tf.nn.relu(
                instance_norm(conv2d(conv1, output_dim=sn*2, k_w=4, k_h=4, d_w=2, d_h=2, name='e_c2'), scope='e_in2'))
            conv3 = tf.nn.relu(
                instance_norm(conv2d(conv2, output_dim=sn*4, k_w=4, k_h=4, d_w=2, d_h=2, name='e_c3'), scope='e_in3'))

            r1 = Residual(conv3, residual_name='re_1')
            r2 = Residual(r1, residual_name='re_2')
            r3 = Residual(r2, residual_name='re_3')
            r4 = Residual(r3, residual_name='re_4')
            r5 = Residual(r4, residual_name='re_5')
            r6 = Residual(r5, residual_name='re_6')

            g_deconv1 = tf.nn.relu(instance_norm(de_conv(r6, output_shape=[self.batch_size,
                                                                           self.output_size/2, self.output_size/2, sn*2], name='gen_deconv1'), scope="gen_in"))
            # for 1
            g_deconv_1_1 = tf.nn.relu(instance_norm(de_conv(g_deconv1,
                        output_shape=[self.batch_size, self.output_size, self.output_size, sn], name='g_deconv_1_1'), scope='gen_in_1_1'))

            #Refined Residual Image learning
            g_deconv_1_1_x = tf.concat([g_deconv_1_1, x], axis=3)
            x_tilde1 = conv2d(g_deconv_1_1_x, output_dim=self.channel, k_w=7, k_h=7, d_h=1, d_w=1, name='gen_conv_1_2')

            # for 2
            g_deconv_2_1 = tf.nn.relu(instance_norm(de_conv(g_deconv1,
                        output_shape=[self.batch_size, self.output_size, self.output_size, sn]
                                                            , name='g_deconv_2_1'), scope='gen_in_2_1'))
github zhangqianhui / Exemplar-GAN-Eye-Inpainting-Tensorflow / ExemplarGAN.py View on Github external
if reuse == True:
                scope.reuse_variables()

            x_var = tf.concat([x_var, img_mask, x_exemplar, exemplar_mask], axis=3)

            conv1 = tf.nn.relu(
                instance_norm(conv2d(x_var, output_dim=64, k_w=7, k_h=7, d_w=1, d_h=1, name='e_c1'), scope='e_in1'))
            conv2 = tf.nn.relu(
                instance_norm(conv2d(conv1, output_dim=128, k_w=4, k_h=4, d_w=2, d_h=2, name='e_c2'), scope='e_in2'))
            conv3 = tf.nn.relu(
                instance_norm(conv2d(conv2, output_dim=256, k_w=4, k_h=4, d_w=2, d_h=2, name='e_c3'), scope='e_in3'))

            r1 = Residual(conv3, residual_name='re_1')
            r2 = Residual(r1, residual_name='re_2')
            r3 = Residual(r2, residual_name='re_3')
            r4 = Residual(r3, residual_name='re_4')
            r5 = Residual(r4, residual_name='re_5')
            r6 = Residual(r5, residual_name='re_6')

            g_deconv1 = tf.nn.relu(instance_norm(de_conv(r6, output_shape=[self.batch_size,
                                                                           self.output_size/2, self.output_size/2, 128], name='gen_deconv1'), scope="gen_in"))
            # for 1
            g_deconv_1_1 = tf.nn.relu(instance_norm(de_conv(g_deconv1,
                        output_shape=[self.batch_size, self.output_size, self.output_size, 32], name='g_deconv_1_1'), scope='gen_in_1_1'))

            g_deconv_1_1_x = tf.concat([g_deconv_1_1, x_var], axis=3)
            x_tilde1 = conv2d(g_deconv_1_1_x, output_dim=self.channel, k_w=7, k_h=7, d_h=1, d_w=1, name='gen_conv_1_2')

            return tf.nn.tanh(x_tilde1)